Designing a microwave-assisted low pressure cold plasma (LPCP) generator: A case study on Salmonella decontamination

Citation

Soleiman Abbasi, Designing a microwave-assisted low pressure cold plasma (LPCP) generator: A case study on Salmonella decontamination(2017)SDRP Journal of Food Science & Technology 2(2)

Abstract

The main objective of the present study was to develop a microwave-assisted low pressure cold plasma (LPCP) generator to be used for decontamination purposes. After the successful designing of the generator and production of cold plasma, optimum operating conditions were experimentally determined. Then, its efficacy on decontamination of egg shell and aluminum foil (inoculated by Salmonella enterica subspp. enterica PTCC: 1709) under various LPCP exposure and storage times was investigated. LPCP exposure for 5 min diminished the bacterial counts by 1.92 and 3.2 logs on the egg shell and aluminum foil, respectively. Moreover, the LPCP exposure up to 10 min showed no significant effect (p>0.05) on various qualitative characteristics, while prolonged LPCP treatment accelerated pH increment in albumen. The achievements of the present study represented the potential of LPCP generator for the partial decontamination of various food and packaging items as an appropriate alternative to the thermal or chemical methods.

Keywords: Cold Plasma, Microwave, Salmonella, Minimal Processing.

References

  1. Bermudez-aguirre D and Corradini MG, (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: A review. Food Res Int 45, 700-712.

    View Article           

  2. Davies RH and Breslin M, (2003). Investigations into possible alternative decontamination methods for Salmonella enteritidis on the surface of table eggs. J Vet Med B 50, 38-41.

    View Article           

  3. De Reu K, Grijspeerdt K, Messens W, Heyndrickx M, Uyttendaele M, Debevere J and Herman L, (2006). Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. Int Journal Food Microbiol 112, 253-260. PMid:16822571

    View Article      PubMed/NCBI     

  4. De Souza PM and Fernandez A, (2011). Effects of UV-C on physicochemical quality attributes and Salmonella enteritidis inactivation in liquid egg products. Food Control 22, 1385-1392.

    View Article           

  5. Fernandez-Gutierrez SA, Pedrow PD, Pitts MJ and Powers J, (2010). Cold atmospheric-pressure plasmas applied to active packaging of apples. Plasma Sci, IEEE Transactions on 38, 957-965.

    View Article           

  6. Gurol C, Ekincl F, Aslan N and Korachi M, (2012). Low temperature plasma for decontamination of E. coli in milk. Int J Food Microbiol 157, 1-5. PMid:22622128

    View Article      PubMed/NCBI     

  7. Harrigan WF (1998). Laboratory Methods in Food Microbiology, Acad. Press.

  8. Jin Y, Lee K, Lee W and Han Y, (2011). Effects of storage temperature and time on the quality of eggs from laying hens at peak production. Asian-Aust J Anim Sci 24, 279-284.

    View Article           

  9. Jones D & Musgrove M, (2005). Effects of extended storage on egg quality factors. Poult Sci 84, 1774-1777 PMid:16463976

    View Article      PubMed/NCBI     

  10. Lee K, Paek KH, Ju W and Lee Y, (2006). Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol-Seoul 44, 269-276.

  11. Liu C, Hofstra N and Franz E (2013). Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp. Int J Food Microbiol 163, 119-128. PMid:23558195

    View Article      PubMed/NCBI     

  12. Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N and Saoudi B, (2002). Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74, 349-358.

    View Article           

  13. Morear M, Moisan M, Tabrizian M, Barbeau J, Pelletier J, Ricard A and Yahia LH, (2000). Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: Influence of the operating conditions. J Appl Phys 88, 1166-1174.

    View Article           

  14. Moreau M, Orange N and Feuilloley MGJ, (2008). Non-thermal plasma technologies: New tools for bio-decontamination. Biotech Adv 26, 610-617. PMid:18775485

    View Article      PubMed/NCBI     

  15. Mukhopadhyay S and Rmaswamy R, (2012). Application of emerging technologies to control Salmonella in foods: A review. Food Res Int 45, 666-677.

    View Article           

  16. Niemira BA, (2012a). Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3, 125-142. PMid:22149075

    View Article      PubMed/NCBI     

  17. Niemira BA, (2012b). Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J Food Sci 77, 171-175. PMid:22384964

    View Article      PubMed/NCBI     

  18. Pankaj S, Misra N and Cullen P, (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Sci & Emerging Technol 19, 153-157.

    View Article           

  19. Pasquali F, Fabbri A, Cevoli C, Manreda G and Franchini A, (2010). Hot air treatment for surface decontamination of table eggs. Food Control 21, 431-435.

    View Article           

  20. Perni S, Shama G and Kong MG, (2008). Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. J Food Prot 71, 1619-1625.

    View Article           

  21. Purevdorj D, Igura N, Hayakawa I and Ariyada O, (2002). Inactivation of Escherichia coli by microwave induced low temperature argon plasma treatments. J Food Eng 53, 341-346. 00174-1

    View Article           

  22. Ragni L, Berardinelli A, Vannini L, Montanari C, Sirri F, Guerzoni ME and Guarnieri A, (2010). Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J Food Eng 100, 125-132.

    View Article           

  23. R?d SK, Hansen F, Leipold F and Kn?chel S, (2012). Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiol 30, 233-238. PMid:22265306

    View Article      PubMed/NCBI     

  24. Scott T and Silversides F, (2000). The effect of storage and strain of hen on egg quality. Poult Sci 79, 1725-1729 PMid:11194033

    View Article      PubMed/NCBI     

  25. Silversides F and Scott T, (2001). Effect of storage and layer age on quality of eggs from two lines of hens. Poult Sci 80, 1240-1245.

    View Article           

  26. Ulbin-Figewicz N, Jarmoluk A and Marycz K, (2015). Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Ann Microbiol 65, 1537-1546. PMid:26273240

    View Article      PubMed/NCBI     

  27. Yun H, Kim B, Jung S, Kruk ZA, Kim DB, Choe W and Jo C, (2010). Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma. Food Control 21, 1182-1186.

    View Article           

We publish articles under Creative Common License (CC-BY) that ensure that all published papers are immediately and permanently available online for everyone, worldwide.
Submit Manuscript