Physicochemical and Phytochemical Characterization of Seed Kernel oil From Desert Date (Balanites Aegyptica)


Zang, C. U., Garba, I. H. and Chindo, I. Y.


Jock Asanja Alexander, Physicochemical and Phytochemical Characterization of Seed Kernel oil From Desert Date (Balanites Aegyptica)(2017)Journal of Chemical Engineering And Bioanalytical Chemistry 2(1)


The seed oil of Balanites aegyptiaca was extracted and its chemical, physical and phytochemical properties which accounts for the oil quality parameters were investigated. The elemental composition of the oil revealed highest metal concentration of sodium (5.9178±0.2 mg/g) in the seed kernel, while magnesium (2.2242±0.007 mg/g) and calcium (1.4643±0.5) in the seed oil. The chemical parameters evaluated include saponification value (200.02±0.12 mgKOH/g), acid value (2.14±0.28 (mgKOH/g), iodine value (104.39±0.00 100/g), peroxide value (2.95±0.00 (mEq/kg) and free fatty acid (0.82±0.01%).. The physical parameters determined were oil content, specific gravity, refractive index and moisture content. These were found to be 45.32±0.0026%, 0.90±0.03, 1.45 and 0.114±0.04%, respectively. The oil quality parameters indicate that the oil is of edible quality with highest %FFA content of 0.84 % and considered non-drying oil. The fatty acids composition of the oil was evaluated using GC-MS as FAME, the oil contains about 47.52 % unsaturated fatty acids. Phytochemical screening of the oil showed the presence of alkaloids, steroids, cardiac glycosides and carbohydrates. The seed kernel of Balanites Aegyptica is a good source of vegetable oil.


  1. Aboaba, O. O., Smith, S. I. and Olude, F. O. (2006). Antibacterial effect of edible plant extracts on Escherichia coli, Pakistan Journal of Nutrition,5(4):325 ? 237.

    View Article           

  2. Adegbe, A. A., Larayetan, R. A. and Omojuwa, T. J. (2016). Proximate Analysis, Physicochemical Properties and Chemical Constituents Characterization of Moringa Oleifera (Moringaceae) Seed Oil Using GC-MS Analysis. American Journal of Chemistry, 6(2): 23-28

  3. Ajayi, I. A. and Ifedi, E. N. (2014). Short toxicological analysis and effect of total replacement of wheat with Balanite aegyptica seed cake on albino rats. Journal of applied Chemistry, 7(7):74 ? 79.

  4. Ajayi, I. A. and Folorunsho, A. F. (2013). Evaluation of the toxicological status of Balanite aegyptica seed oil. Advances in life science and Technology journal, 10(1): 2224 ? 2225.

  5. Albert, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002). Molecular Biology of the cell. Garland sciences New York, 62(1):118?119.

  6. AOAC, 1990. Official method of analysis of the Association of Official Analytical Chemist.

  7. AOAC International, Arlington (USA), No 934.06.

  8. AOAC, 2006. Association of Official Methods of Analytical Chemists, W. Horwitz Editor

  9. AOAC, Official Methods of Analysis, 2000, 13th ed. Association of Official Analytical Chemist Pub.,Washington D.C., USA.

  10. AOCS, 1998. Official Methods and Practices of the AOCS, fifth ed. AOCS Press, Champaign, USA.

  11. Aurand, L. W., Wood, A. E. and Wells, M. R. (1987). Food composition and Analysis. Van Nostrand Reinhold, New York, 20-23

    View Article           

  12. Asuquo, J. E. (2008). Studies on the Adsorption of Some Selected Metallic Soaps onto

  13. Author, C. C. (1995). Lipid ?based fats substitutes. Critical Review Science Nutrients journal, 35(5):4-5.

  14. Bishnu, C. and Zeev, W. (2005). Variation in diosgenin level in seed kernels among different proverances of Balanite aegyptica Del (Zygophyllaceae) and its correlation with oil content. African Journal of Biotechnology, 4(11):1209-1213.

  15. Cocks, L. V. and VanRede, C. (1997). Laboratory Handbook for oil and fats analysis. Academia press London. 67

  16. Daya, L. C. and Vaghasiya, H. U. (2011). A review on Balanite aegyptica Del (Desert date) phytochemical constituents, traditional uses and pharmacological activity. Journal of Pharmacogn Rev, 5(9): 55-62. PMid:22096319 PMCid:PMC3210005

    View Article      PubMed/NCBI     

  17. DiNardo, J. C. (2005). Is mineral oil comedogenic? Journal of cosmetic Dermatology, 4(1): 2-3. PMid:17134413

    View Article      PubMed/NCBI     

  18. Elbadawi, S.M.A., Ahmad, E.E.M., Mariod, A.A. and Mathaus, B. (2017). Effects of thermal processing on physicochemical properties and oxidative stability of Balanities aegyptiaca kernels and extracted oil, GRASAS Y ACEITES 68 (1): 1-7

    View Article           

  19. Elfeel, A. A. (2010): Variability in Balanites aegyptica var. Aegyptica seed kernel oil, protein and minerals contents between and within locations. Agricultural Biotecnological journal of North America, 1(2): 170 ? 174.

  20. Elfeel, A. A. and Warrang, E. I. (2006). Variation in morphological and chemical characteristics of fruits and seeds among eleven geographical sources of Balanite aegyptica (L). Dell. Sudan Silva, 12(1): 21-40

  21. Elseed, A. M. A. F., Amin, A. E., Khadija, A. A., Ali, J. S., Hishinum, M. and Henana, K. (2002). Nutritive evaluation of some fielder tree species during the dry season in Central Sudan. Asian Aust. Journal Animal Science, 15(6): 844-850.

  22. Eqbal, M.A. D., Halimah, A.S., Abdulah, M.K. and Zalifah, M.K. (2011). Fatty acids composition of four different vegetable oils (Red palm olein, olein, corn oil and coconut oil) by GC. 2nd International Conference on Chemistry and Chemical Engineering, 14(1): 31?34.

  23. Erum, Z., Rehana, S., Mehwish, A. H. and Anjum, Y. (2017). Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arabian Journal of Chemistry, 10: S3870?S3876.

    View Article           

  24. Gebrekidan, M., and Z. Samuel. (2011). Concentration of heavy metals in drinking water from urban areas of the Tigray region, Northern Ethiopia. Momona Ethiopian Journal of Science 3 (1): 105?21.

  25. Gillian, B. H., Jacob, N., Tina, S., Chris, S., Mick, D. E., Roy, S. and Carlo, L. (2008). Fatty acid and fat soluble antioxidants concentrations in milk from high and low- in put conventional and rganic system: Seasonal variation. Journal of Science,Food Agriculture, 88: 1431 ? 1441.

    View Article           

  26. Guinand, Y. and Lemessa, D. (2001). Reflection on the role of wild food and famine foods at a time of drough.Wild foods plants in Ethiopia.Workshop proceedings. USAID/OFDA. Mombassa, Kenya. http// Retrieved on 3/09/2014.

  27. Gunstone, F. D. (2002): Vegetable oils in food Technology: Composition properties and uses. Blackwell Publishing. 87.

  28. Haftu G.A. (2015). Physico-chemical characterization and extraction of oil from balanites aegyptiaca plant (seed).World Journal of Pharmaceutical Research, 4(11): 1723-1732.

  29. Hale, S. and Belgin, B. (2011). Determination of Fatty Acid, C, H, N and Trace Element Composition in Grape Seed by GC/MS, FTIR, Elemental Analyzer and ICP/OES. SDU Journal of Science, 6 (2): 140-148

  30. Harborne, J. B. (1998): Phytochemical methods. A guide to modern technique of plant analysis. Chapman & Hall London. 260-269.

  31. Harold E, Ronald JK, Sawyer R (1990). Pearson's Chemical Analysis of Food (18th ed). Longman Science Technology: 513-514.

  32. International Union of Pure and Applied Chemistry. (1990).Technical Reports and Recommendations

  33. Jock, A.A., Muhammad, Z.A.A., Abdulsalam, S., El-Nafaty, U.A. & Aroke, U.O. (2017). Insight into kinetics and thermodynamics properties of multicomponent lead(II), cadmium(II) and manganese(II) adsorption onto Dijah-Monkin bentonite clay. Particulate Science and Technology: 1-10.

  34. Jorgensen, J. H. and Turnidge, J. D. (2007): Antibacterial susceptibility tests, dilution and disk diffusion methods manuel. Clinical Microbiology 9th ed.Washington DC. American Society for Microbiology, 1152-72.

  35. Lino, M. C. R., Radman, R.; Bert, B., Misula, L., Lenon, G., Holmbom, B., Locke, I. C., Locke, S., Thompson, S. and Keshavarz, T. (2006). Biological activity of industrial wood and bark waste from pinus migra. Post-presented at the X International congress phytopharm, 27?30 Russai.

  36. Locket, C. T., Calvert, C. C. and Grivetti, L. E. (2000). Energy and micronutrients composition of dietary and medicinal wild plants consumed during drough. Study of rural Fulani, North easthern Nigeria. International journal of food sciences, 51(3): 195-208.Lohlum, S. A., Forcados, E. G.; Agida, O. G., Ozele, N. and Gotep, J. G. (2012). Enhancing the chemical composition of Balanite aegyptica seeds through ethanol Extraction for use as a protein source in feed formulation. Sustainable Agriculture Research journal, 1(2):1927-1932.

  37. Mortadha, A. A., Tahseen, A. A., Imad A. A. (2015). Extraction of date palm seed oil (phoenix dactylifera) by soxhlet apparatus. International Journal of Advances in Engineering & Technology, 8(3): 261-271

  38. Manji, A. J., Sarah, E. E. and Modibo U. U. (2013). Studies on the potentials of Balanites aegyptica seed oil as a raw material for the production of liquid cleansing agents. International Journal of Physical Science, 8(33):1655-1660.

  39. McCullough, B. (2006). Indiana Archaeo News, 4000-year-old Kitchen unearthed. . Retrieved 24/08/2014.

    View Article           

  40. Mohammad, A. and Syed, M. N. (2005). Taxonomic perspective of plant species yielding vegetable oils used in cosmetics and skin care productions. African journal of Biotechnology, 4(1): 36?44.

  41. Muhammad, A. N., Tariq, M. and Syed, S. S. (2012). Evaluation of oil seeds for their potential Nutrients. ARPN Journal of Agricultural and Biological Sciences,7(9): 1990 -6145.

  42. Okia, C. A., Kwetegyeka, J., Okiror, P., Kimondo, J. M., Teklehaimanot, Z. and Obua, J. (2013). Physi-cochemical characteristic and fatty acid profile of Desert Date kernel oil. African crop science journal, 21(3):723 ? 734.

  43. Oxford English Dictionary 3rd ed. (2005).Oxford University press.

  44. Pearson, D. (1981).The Chemical Analysis of Food (8Ed).J. A. Churchill London .535.

  45. Pehlivan, E., Arslan, G., Gode, F., Altun, T., Musa, M. and ?zcangrasas, Y. A. (2008). Determination of Some Inorganic Metals in Edible Vegetable Oils by Inductively Coupled. julio-Septiembre, 59(3): 239-244.

  46. Pritchard, H.W. (1991). Water potential and embryonic axis viability in recalcitrant seeds of Quercus rubra. Ann Bot 67:43?49

    View Article           

  47. Sara, M.E.F and Mahdi, A.S.S. (2016). Physicochemical Properties of Balanites aegyptiaca (Laloub) Seed Oil. Journal of Biological Science, 2(4):1-10.

  48. Sofowora, A. (1993). Medicinal plant and Traditional Medicine in Africa 2nd ed. John Wiley and sons. New York USA. 6 ? 65.

  49. Vishnoi, N. R. (1979). Advanced practical chemistry. Ghaziabad ? India. Yikab Publication house. 447-449.

We publish articles under Creative Common License (CC-BY) that ensure that all published papers are immediately and permanently available online for everyone, worldwide.
Submit Manuscript