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ABSTRACT 
A simple and easily implemented technique for taking orthogonality constraints into account , which has 

been proposed earlier was used to investigate the effect of the finite dimensional approximation and basis 

set optimization on the accuracy of excited state energies of the  H2+ and H3++  molecular  ions. 
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INTRODUCTION 

The development of computational methods that 

can provide a high accuracy in determining 

eigenvalues and eigenvectors for a self-conjugate 

operator H (especially higher one, such as the 

energies of excited states) is a topical problem. In 

practice, the exact solution for an eigenvalue 

problem in an infinite-dimensional Hilbert space of 

states X is replaced by a solution in a finite-

dimensional subspace    M = PX with the 

corresponding projector P, i.e. 

 

 (H - E i)  i = 0,   i =  1,2, …, n,    i =  i             (1) 

 

here  n = dim M and the orthoprojector P is defined 

by a chosen finite basis set. 

It is clear that such an approximation reduces the 

accuracy of calculations. Moreover, a finite 

subspace which is optimal for the lowest  

eigenvalue E1 , in general, does not ensure an 

acceptable accuracy for the higher eigenvalues. 

The problem becomes more complex when the 

constraints (e.g. orthogonality restrictions) are 

imposed on the eigenvectors : 

 

u s i = 0,             i =1,2,…, n,                                          (2) 

                                 s = 1,2,…, q  n 

 

 

 

In  general, the constraint vectors u s  X do not 

completely belong to subspace M and are arbitrary 

with respect to the operator PHP. For example, this is 

a case of the excited state calculations where a 

basis set specifically designed for the ground state is 

used to determine the ground state energy and a 

different basis set can be used for excited state 

calculations.  

 In the most commonly used approaches for 

excited states (e.g. [1, 2]) the same basis set is 

employed for both the ground and excited state 

even though as long ago as 1958 Shull and Lowdin 

[3] pointed out ``the desirability of using different 

basis sets for different states''. This approach can 

provide a more compact representation of the 

accurate excited state wave functions than the use 

of a common basis set for ground and excited 

states. Such a scheme requires significant 

computations and can be justified if there is an 

efficient method for taking into account constraints 

of type (2). The conventional methods of 

constrained optimization (e.g. [4]) proved not to be 

effective enough to solve the complicated problem 

of quantum physics.   

 In this communication a simple and easily 

implemented asymptotic projection (AP) technique 

proposed earlier [5-7] for taking orthogonality 

constraints into account is used to investigate the 

effect of the finite dimensional approximation and 

basis set optimization on the accuracy of excited 

state energies. This communication is arranged as 

follows: in Section 2, the  Rayleigh-Ritz variational 
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principle with basis set optimizaton for excited states 

of the same symmetry as a lower state is described. 

In Section 3 for the simple systems H2+ and H3++ we 

examine the convergence of the excited state 

energies  with the  number of basis functions and 

the accuracy supported by different scheme for 

construction of basis sets. One has been shown that 

basis set optimization provides comparable 

truncation basis set errors for different states and, 

thus, leads to an energy difference which deviates 

from exact one within sub-Hartree level of 

accuracy. 

 

Rayleigh-Ritz variational principle with basis set 

optimizaton for excited states 

Rayleigh-Ritz variational method is well adapted for 

the approximate solution of eigenvalue problem (1). 

In this case the lowest eigenvalue E1 (the ground 

state energy) is determined by minimizing the 

functional 

  
E() =  H  / ,            = 1  
 

E 1 = E (1) = 1  H 1  =  min  H  / ,     1 1  = 1,  (1) 

1 

 

Here M1 P1 X, P1 is the orthoprojector defined by a 

basis set optimized for the ground state, H is 

Hamiltonian of a system. 

The first excited state energy is defined by relation 

 
E 2 = E (2) = 2  H 2  =  min  H  / ,     2 2  = 1,  (2) 

                                                                          {1}⊥ 

 

where the minimum is taken over  all vectors  

belonging to the orthogonal complement {1}⊥ to 

the vector 1 , .i.e. we deal with optimization 

subject to the constraint 1 = 0. It should be 

stressed that {1}⊥  M1, i.e. a subspace M2 = P2X 

different from M1 generally can be used for E2. 

Higher eigenvalues are determined in a similar way.  

 For simplicity we limit ourselves by the first 

excited state having the same symmetry as the 

ground one, i.e. a constraint vector   u  1 .  To 

make progress we rewrite the orthogonality 

constraint in the symmetrical form 

 

 Pu   = 0 ,     with   Pu =  1 1.                           (3) 
 

Then the stationary condition for the functional 

L =  (H +  Pu)  /  
 

and variations   in the form  

  = P   +  =
r
a 1

(aP) a                                   (4) 

 

lead to equations (see Refs.[6, 7] for more details) 

from which the energy and a wave function  of the 

first excited state can be determined: 

 

P2 (H +  Pu)P2 2 = E2 2,            2 = 2 2 

The second term in (4) allows the finite dimensional 

subspace M 2 spanned by the chosen basis set to 

be rotated within Hilbert space, i.e. non-linear 

parameters  a of a basis set are optimized directly 

for a given excited state:   

 

(aP2)  (H +  Pu)  = 0,   a = 1, 2,…, r,      a    / a 

In these equations the multiplier is as yet 

undetermined and condition (3) is not satisfied. The 

key moment of our AP method is the following 

statement [6,7]: 

 

The constraint vector P2 1  tends to an 

eigenvector of the operator  

 

Hmod = P2 (H +  Pu)P2   if and only if     . 

Then the fulfillment of condition (3) will follow 

automatically due to the orthogonality of the 

eigenvectors, which correspond to different 

eigenvalues of a self-conjugate operator. The only 

addition computation beyond that required for the 

ground state is evaluation of the overlap matrix 

element      1 2 . This result can be easily 

extended to the higher energy levels. For example, 

in the case of the second excited state the 

operator Pu should be substituted by the 

orthoprojector  Pu=1 1 + 22.     

 

Applications to the H2+ and H3++ molecular ions 

In order to assess the effects of basis set truncation 

on the calculated energies we examined the simple 

systems H2+ and H3++ for which the exact numerical 

solutions are known [8,9]. Calculations were carried 

out using the basis sets of 1s-type Gaussian 

functions, whose non-linear parameters (the orbital 

exponents and positions of functions) were 

determined by minimizing the energy for each 

individual state. We studied both the ground state 

(GS) and the first excited state (ES) of the same 

symmetry. For H2+ a nuclear separation of  2 bohr 

was used. For the linear H3++ ion  the nuclei were 

placed at  (0.0,0.0,-2.0),  (0.0,0.0,0.0) and  

(0.0,0.0,+2.0).  

 Fig.1 demonstrates convergence of the 

energy error E-Eexact with the size of the basis set m 

for the GS ( ⎯  )and ES ( - - - ) of the H2+ ion.  The 

curves “ ⎯ “  and “- - -“ correspond to basis sets 
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optimized for an individual state whereas  “x x x ” 

designates error in the ES energy computed with 

basis set optimized for the GS. A similar situation we 

observed for  H3++ .  

The total energies and vertical excitation 

energies computed with the largest basis sets (29s 

functions for  H2+ and 42s – for H3++ ) are given in 

Table 1.  We observed that the basis set optimization 

yields the similar energy contributions from 

incompleteness of basis sets for both the GS and ES. 

This leads to high precisional values of excitation 

energies  (ES -GS) ~ 0.2Hartree. Thus, adjusting 

basis sets directly to the corresponding states is an 

important factor for their balanced description. 

 

 

Figure 1: Energy error for the ground ( ⎯  ) and excited state ( - - - ) of H2
+ as a function of the number functions (m). 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Total energies (Hartrees) and error in vertical excitation energies (Hartrees) for H2+ and H3++ 

 

molecule basis set E (GS) E (ES)  (ES -GS) Еexact – Е 

Н2+ 29s -0.602 633 99 0.139 135 54 0.741 769 53  0.19 

Н32+ 42s -1.524 159 62 -1.173 373 83 0.350 785 81 0.21 

 

 

We shall discuss now an accuracy of the fulfillment 

of the orthogonality constraint as a function of  . 

One has been shown that, in general, the constraint 

vector  tends to an eigenvector of the modified 

operator Hmod as 1/ , so that the limit  lim →     1 

2   exists. However, a character of convergence 

depends on specific features of the particular 

problem under consideration.  In our case of  the 

hydrogen molecular ion Figure 2 shows  that the 

value  ~510 Hartrees ensures the overlap integral 

value 1 2  < 10-7 – 10-8.   As one can see the GS-

to-ES transition occurs virtually step-wise within a 

narrow range of   ~ 0.740.75 Hartree that 

corresponds to the excitation energy value (see E 

from table 1). 

In addition we observed that in a wide 

range 0.75 < <104 , the value E2 () remains almost 

constant, indicating solution stability  ensured by the 

method. 

 

 

Thus applying the AP method to the excited state 

calculations in combination with basis set 

optimization provides a high accuracy in both the 

total ES energies and energy difference 

calculations.  

 
Figure 2: The overlap integral value 1 2  as a 

function  of   for H2+. 
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