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ABSTRACT 
Genome engineering, the ability to manipulate and alter DNA sequences in living cells is entering to its golden 
age. This is due to the advent of quickly advancing techniques that enable to engineer the genome with signifi-
cant impact. Many of the plants, yeast strains and filamentous fungi industrially relevant for enormous biotech-
nological applications are non-domesticated difficult to engineer, have intricate genomes and have little molecu-
lar tools, making their genome engineering a complex task.  But precise genome editing which mimics the natu-
rally occurring mutations has been used to overcome the biological engineering challenges posed by these or-
ganisms. Application areas of precise genome editing are diverse and potentially limitless as it is capable of al-
tering any component of any genome.  The technique enables to open the genome like a book and proceed to 
words; in this case the DNA sequences then engineer the sequences to end up with the desired product. Focus 
areas of precise genome editing includes but not limited to; genome engineering, knockout, activation, RNA 
editing, in disease models, gene drive, biomedicine, gene function and in vitro gene depletion. With precise ge-
nome editing approach particularly Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), there 
are visions of another green revolution - where plant yields could be improved significantly and worries might 
fade about how to feed the world in 2050 with projected population of nine billion people. For various applica-
tions precise genome editing has been successfully employed in several plants including; Arabidopsis thaliana, 
Nicotiana tobacum, sweet orange, rice, wheat, tomato, soybean, maize, sorghum and popular. Although CRIS-
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INTRODUCTION 
Over the next 30 years, the world is expected to look for ways to feed additional two billion people. This implies 
we are responsible to produce a lot more food.  Among the different options, one way we might be able to ac-
complish this is by engineering plants to make them more nutritious, grow faster and more resilient to various 
stresses [1]. 
As a result of the rapid growth of genome editing techniques, commercially engineered targeted nucleases be-
came available. But, such methods utilized for genome engineering are with the problem of low efficiency and 
target organisms and cell types are limited [2]. In the past, strategies for introducing precise and efficiently tar-
geted genomic alterations were limited to model organisms that had well established collection of molecular bi-
ology tools such as markers, plasmids and strong means of inducing homologous recombination. But, all such 
limitations changed over time with the advent of customized DNA endonucleases such as transcription activator 
-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs). TALENs were discovered at the end of 
2009, immediately after the advent of TALE-DNA [3].  Recently the most advanced technique of genome edit-
ing, CRISPR/Cas9 enter to applicability although its discovery was in 1987 [4]. 
 
Genome editing   
Genome engineering, the ability to manipulate and alter DNA sequences in living cells is entering to its golden 
age [5]. Fast advancing techniques that enable to engineer the genome with significant impact is emerging.  The 
technology is enabling to have easy and precise removal, insertion or edition of DNA sequences that attracts the 
attention of scientific community in wide areas, such as agriculture, energy, biomedicine and environment.  
Many of the plants, yeast strains and filamentous fungi industrially relevant for enormous biotechnological ap-
plications are non-domesticated difficult to engineer, have intricate genomes and little molecular tools, making 
their genome editing a complex task. Genome editing especially with CRISPR/Cas9 has been used to overcome 
the genetic engineering challenges posed by these organisms [6]. It is believed that the ideal genome editing tool 
should fulfill the following three criteria. (a) With-out off target mutation, (b) high frequency of the desired se-
quences in the target cell population, and (c) assembling of the nucleases should be rapid and efficient [7].  
When we look details of genome editing techniques emerged before the advent  of CISPR/Cas9, ZFNs use about 
30 amino acid fingers that fold around a zinc ion to form a compact structure that recognizes a 3-base pair of 
DNA. Consecutive finger repeats are able to recognize and target a wide area of the target DNA [5].  When 
compared with ZFNs, TALENs  have better ability in targeting their chromosomal site,  have  a wide spectrum 
of sequences that can be targeted and has less chance for off-target since their design is intended to recognize 30
-36 base pairs from the target site while ZFNs is designed to recognize 18-24 base pairs [7].  
Although ZFNs and TALENs enable genome editing in many species, their wider applications is hindered by 
their costs in time and labor, have access to the chromatin site but not other part of the genome, unable to have 
multiplex genome editing  and   both require engineering of new proteins for each DNA sequences to be targeted 
[5, 8, 9]. 
Random mutagenesis is complex task due to low homologous recombination in plants. But as a result of grow-
ing demand in boosting plant productivity, robust and versatile genome editing tools became highly demanding. 
Due to availability of more plant genomes, exploiting the powerful approach of genome editing, CRIPSR/Cas9 
in various plant species is becoming realistic [10]. CRISPR/Cas9 genome editing tool is successfully employed 
in several plants including model plants and food crops; Arabidopsis thaliana, Nicotiana tobacum, sweet orange, 
rice, wheat and tomato and few energy crops; popular, switch grass,  soybean, maize and sorghum [11]. The ge-
nomes of both dicots and monocots have been edited using the same vector system for CRISPR-Cas9, even 
though codon optimized versions of Cas9 are available for each plant type [10, 11, 12, 13, 14].   Success of ge-
nome editing techniques varies from species to species for instance, CRISPR/Cas9 works well in rice and barley, 
but TALENs works well in wheat than CRISPR/Cas9 [15]. 
 
CRISPR/Cas9 Technology  
The search for an evolutionary genome editing approach results in to the advent of a system called Clustered 
Regularly Interspaced Short Palindromic Repeat (CRISPR/Cas9).  When compared with previous genome edit-
ing systems (TALENs and ZFNs),   CRISPR/Cas9’s simplicity, efficiency, specificity, minimal off-target ef-
fects, and amenability to multiplexing has  brought  hasty genetic manipulation in almost all tested eukaryotes 
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[16,17, 18].   
In 1987, CRISPR/Cas9 system was first discovered by Japanese scientist in bacteria as an adaptive immune sys-
tem by which enables the bacteria to defend against invading foreign DNA, like bacteriophage.  Later on they 
were found in 40 % of sequenced bacterial genomes and 90% of the archaea [19, 20].  The CRISPR system is 
composed of CRISPR loci in the genome and a Cas9 protein. CRISPRs is a genomic locus of tandem direct re-
peat sequences and protospacers , the space in between repeat sequences,  both of which are derived from the 
invading elements. The CRSPR loci contains a combination of Cas9 genes; sequences for non-coding RNA ele-
ments called CRISPR RNA(crRNA) and sequences for small trans-encoded CRIPSR RNA, i.e., trans-activating 
crRNA(tracrRNA). The two RNA sequences (crRNA and tracrRNA)  are responsible in forming  a complex 
known as guide RNA, which  again determines the specificity of  the cleavage  of the target sequences in the 
nucleic  acid along with the Protospacer  Adjacent Motif (PAM), a 5’-NGG sequences [21, 22]. 
CRISPR/cas9  combines Cas9 endonuclease of Streptococcus pyogenes and a synthetic single guide RNA 
(sgRNA), responsible for directing Cas9  endonuclease to a target sequences complementary to the 20 nucleo-
tides preceding the post spacer-associated motif(PAM) NGG, which is required for Cas9 activity [23, 24]. Then 
it is possible to engineer the system to the required target by the addition of only 20 nucleotides to the sgRNA 
molecule allowing easily targeted genome editing and regulation. Again by using multiple sgRNAs it is possible 
to have simultaneous targeting of several genomic loci (multiplexing) [25]. Cas9 is directed to its DNA target by 
base pairing between the gRNA and DNA. A Protospacer Adjacent Motif (PAM) downstream of the gRNA-
binding region is required for Cas9 recognition and cleavage as illustrated in Fig1.  

 
 
Cas9/gRNA cuts both strands of the target DNA, triggering endogenous Double Strand Break (DSB) repair. For 
a knockout experiment, the DSB is repaired via the efficient but error-prone Non Homologus End Joining 
(NHEJ) pathway, which introduces an indel at the DSB site that knocks out gene function. In a knock-in experi-
ment, the DSB is repaired by Homology Repair (HR) using the donor template present, resulting in the donor 
DNA sequence integrating into the DSB site. 
 
Application of CRISPR/Cas9 genome editing in plant improvement  
Application areas of genome editing are diverse and potentially limitless. Precise genome editing is capable of 
altering and/or replacing any component of any genome. Application areas of CRISPR/Cas9 includes but not 
limited to; genome engineering, knockdown/knockout, activation, RNA editing, in disease models, gene drive, 
biomedicine, gene function and in vitro gene depletion [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. 
CRISPR/Cas9 and its modified versions have been widely employed for genome editing in various organisms. In 
a model plant, Arabidopsis, many genes including; AtSPL4, AtBRI1, AtPDS3, AtFLS2, AtADH and AtFT have 
been targeted with varying mutational efficiencies, from 1.1% up to 84.8%, in the first generation. Up to 79.4% 
of mutations have been stably inherited across multiple generations of plants. In rice several genome editing at-
tempts have been successful [37, 38, 39, 40]. 
For instance, in rice mutation rates of 9.4% and 7.1% were achieved in the knockouts of OsPDS and OsBADH2 
genes  respectively. But, later on with improved CRISPR/Cas9 components much higher mutation rates (average 
85.4 %) with more of homozygous and biallelic mutations were obtained. Again in rice with the right combina-

Figure 1: Schematic of double strand break repair, Adopted from Ding et al., 2016, Ref.26  
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tions of sgRNA, the system has successfully deleted 115-245 kb of chromosomal fragments [41, 42, 43]. Rice 
bacterial blight susceptibility genes OsSWEET14 and OsSWEET11 have been targeted  by Protoplast  transfec-
tion with transient expression of  sgRNA/Cas9 (variant of the CRISPR/Cas9 system) [12]. CRISPR/Cas9 medi-
ated multiplex genome editing has employed for rapid improvement of grain weight in rice [44]. 
In a study where Cas9 targeting of a GFP gene in soybean hairy roots has resulted in  average indel frequencies 
greater than 70%  for targeted seven genes(GFP 5′, 01gDDM1, 11gDDM1, Glyma04g36150, Glyma06g18790, 
miR1509, and miR1514) (14). But prior gene editing experiment by transcription-activator like effector nucleas-
es (TALENs)   resulted in 3-7 % mutation   in soybean hairy roots [45]. 
 Delivery of sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) 
into Nicotiana benthamiana plants stably over expressing the Cas9 endonuclease and subsequently challenge 
these plants with TYLCV.  This demonstrates that the CRISPR/Cas9 system targeted TYLCV for degradation 
and introduction of mutations at the target sequences. This confirms the efficacy of the CRISPR/Cas9 system for 
virus interference by targeting TYLCV, providing new possibilities for engineering plants resistant to DNA vi-
ruses ([5]. 
 Targeted gene mutagenesis was detected for 90 loci by maize protoplast assay, with an average cleavage effi-
ciency of 10.67%. Stable knockout transformants for maize phytoene synthase gene (PSY1) were obtained. Mu-
tations occurred in germ cells can be stably inherited to the next generation. Moreover, no off-target effect was 
detected at the computationally predicted putative off target loci [46].  Targeting of   Zmzb7 gene that encodes 
the IspH protein resulted in the mutation efficiency ranged from 19%–31% in maize [47]. 
 As stated in Table1, several successful experiments have been reported in diverse plants with more complex 
genomes including, sorghum (Sorghum bicolor), maize (Zea mays), poplar (Populus tricocarpa), tomato 
(Solanum esculentum) citrus (Citrus sinensis) and wheat (Triticum aestivum). All this fruitful trails indicates the 
potential of CRISPR/Cas9 system as feasible and   pragmatic technology in plant genome editing for various 
novel applications [10, 12, 48,  49]. 

Plants species  Target genes Ref. 

 Gene  knockout or editing with Cas9 paired nickase/sgRNA 

Arabidopsis thaliana RTEL1, ADH1, TT4 50, 39 

Gene knockout or editing with Cas9/sgRNA 

Arabidopsis thaliana AtPDS3, AtFLS2, TT4,BRI1, JAZ1, GAI,ADH1, CHLI, AP1, 

FT, SPL4, AtCRU3, At1g56650 

40,43, 51,  52 

Nicotiana benthamiana NbPDS, PDS, NbPDS, NbPDS3, NbIspH 53, 54 

Oryza sativa CAO1, LAZY1, OsMPK5, OsMYB1, ROC5,SPP, 

YSA.BEL,SWEET13/1a/1b, PMS3, EPSPS, DERF1, MSH1, 

MYB5, CDKB2, OsGSTU, OsMRP15, OsAnP, OsAOX1a, 

OsAOX1b, OsAOX1c, OsBEL and many more 

12,  37,41,55, 

56,  57 

Nicotiana tabacum NtPDS, NtPDR6, ALS 58, 59 

Solanum tubersum StIAA2, StALS1 60, 61 

Medicago trancatula GUS 62 

Populus tomentosa PtoPDS, 4CL, PtPDS 11, 63 

Glycine max Glyma07g14530,Glyma06g14180, Glyma08g02290, 

Glyma12g37050, Glyma18g04660, Glyma20g38560; 

GmFEI2, GmSHR 

14 , 62,  64 

Zea mays ZmIPK, LIG1, Ms26, Ms45, ALS2 10 ,49 

Solanum lycopersicum SlAGO7,mGFP5, eGFP, RIN, ANT1 65, 66,    67 

Citrus sinensis CsPDS 48 

Marchantia polymorpha MpARF1 68 

Sorghum bicolor DsRED2 DsRED2 12 

Triticum Aestivum TaMLO,INOX, PDS,TaMLO-A1 41,53, 69 
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It is evident that the CRISPR/Cas9 technology continues to evolve with modified versions as well as new tech-
nologies coming to the fore-front beyond genome editing. For instance, researchers have been able to reprogram 
the CRISPR/Cas9 system to recognize and cleave specific RNAs (RCas9) instead of the conventional DNA tar-
gets [74, 75]. The advent of this ability opens new avenues in to RNA detection, analysis and manipulation.  The 
system has also been modified to allow targeted control of gene expression.  Blocking of transcription of target 
genes can be possible by utilizing a catalytically inactive dCas9 along with a sequence specific sgRNA   to create 
a DNA recognition complex which can bind to targeted promoter sequences [76, 77]. 
CRISPR/Cas9 is emerging as a new tool for plant genomics and biotechnology research despite pitfalls to ex-
plore the potential of CRISPR/Cas9   for functional genomics and pragmatic plant improvement [78]. Catalyti-
cally inactive Cas9 fused with activation or repression domains are important for transcriptional regulation, mod-
ification of epigenetic status, or for imaging purposes, thereby, opening new possibilities for genome-wide func-
tional interrogation of genes.  When the sciences of CRISPR/Cas9 became matured integration into plant breed-
ing schemes is inevitable.   It is also anticipated that synergies between genomics and plant breeding will ease 
the precise characterization of plant genetics resources and speed up the development of new cultivars [79, 80]. 

Conclusions   
The genome editing technology particularly CRISPR/cas9, a revolutionary bioengineering technique continues 
to evolve and will have fascinating applications in biological engineering.  CRISPR/Cas9 approach of genome 
editing is a game changer in plant genetics research as it mimics a gene mutation that occurs naturally, but what 
is wanted today is speed and trait of interest. Though several successful results have been obtained, key advances 
are still required to maximize the potential of CRISPR/Cas9 for pragmatic plant improvement including:- off-
target mutation due to off-target cleavage, side effects on nearby genes, influence on chromatin structure, effi-
cient delivery method in polyploidy plants, the development of  Cas9/sgRNA ribonucleoprotein complex (RNP) 
systems for efficient DNA-free genome engineering, methods for transient delivery of the RNPs to obviate the 
need for stable transformation and regeneration,  efficient gene editing systems that enable gene replacement, 
fusions and stacking, CRISPR/Cas9-based trait discovery platforms in target plant  species and understanding the 
mechanisms of double strand break induced by Cas9  is also important.  It is crucial to expand the availability of 
plant specific vectors, genome resources and transformation protocols before designing rational strategies that 
can be used to implement the CRISPR/Cas9 technology to biologically engineer wider economic traits of plants. 
 
 

Table 1: Applications of CRISPR/Cas9 in plants 

Multiplex genome editing with Cas9/sgRNA 

Populus tomentosa PtPDS1 and PtPDS2 70 

Arabidopsis thaliana AtRACK1bCAtRACK1c, HLI1CCHLI2, 

ETC2,CPC,TRY,andPYL1-6, t5g55580 

37 , 43,71 

Nicotiana tabacum NtPDSCNtPDR6 59 

Oryza sativa CDKB1, CDKA1, MPK1/2/5/6, PDSOsFTL 43,57,  72 

Solanum lycopersicum Solyc07g021170CSolyc12g044760 65 

Zea mays ZmHKT1 13 

Glycine max 01gDDM1,11gDDM1,01gC11gDDM1; 

GmFEI2,andGmSHR 

 14,73 

Triticum aestivum aMLO-A1CTaMLO-B1CTaMLO-D1 69 

Gene insertion/replacement by HDR with Cas9/sgRNA and donor template 

Nicotiana benthamiana AvrIIsite ! NbPDS 71 

Zea mays UBI:MoPAT 49 

Oryza sativa OsPDS,OsBADH2 41 

Arabidopsis thaliana YFFP,GU.US,DGU.US ! GUS functional,nptII ! ADH1 9,37, 50, 

55 
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CRISPR/Cas9: Clustered regularly interspaced short palindromic repeat /associated protein 9; TALENs: Tran-
scription activator -like effector nucleases; ZFNs: Zinc finger nucleases; crRNA: CRISPR RNA; tracrRNA : 
Trans-activating crRNA;PAM : Protospacer  adjacent motif ; sgRNA : Single guide RNA ; DSB: Double strand 
break ;NHEJ : Non homologus end joining ; HR :Homology  repair; RNP: Ribonucleoprotein complex; indel: 
insertion/deletion   
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