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ABSTRACT 

Coffee leaf rust disease caused by Hemileia vastatrix, is currently a very serious problem in 

coffee production and resistant varieties are the most appropriate and sustainable mitigation 

strategy against the disease. But the knowledge for both constitutive and inducible immune 

system is still limited in C. arabica. In this present study, we conducted genome-wide analysis 

of defensin-like genes, an important peptide family of plant constitutive immunity, in C. ara-

bica genome. Eighteen defensin-like genes were obtained by TBLASTn method and further 

clustered into two groups by phylogenetic analysis. Nucleotide sequence alignment revealed 

insertion/deletion mutations of duplicated defensin-like genes in C. arabica. Besides, structure 

modeling apparently indicated two types of protein structures among the 18 defensin-like 

genes. This study provides an overview of defensin-like genes in C. arabica and will serve as a 

guideline for future study. 
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1. INTRODUCTION 

Coffee is a well appreciated beverage crop in the 

world and a cash crop of huge socioeconomic im-

portance for many smallholder farmers in developing 

countries. Coffea arabica and Coffea canephora are 

main commercially produced species ofo coffee [1]. 

Leaf rust disease caused by a biotrophic fungus Hem-

ileia vastatrix (Uredinales: Pucciniaceae) is a very 

serious phytosanitory problems in the production of 

this crop [2]. Fungicide is an efficient way to control 

the disease, however, associated the production cost 

and concerns over the adverse effects of misapplica-

tions on the quality of coffee drinks and the environ-

ment make resistant varieties being the most appro-

priate and sustainable management strategy against 

the disease [3]. A series of resistant varieties were 

released, including Oeiras-MG 6851 that originated 

from the cross Caturra Vermelho (CIFC 19/1) and 

Hibrido de Timor (CIFC 832/1) [4]. But the re-

sistance has already been broken by race XXXIII of 

H. vastatrix [5]. Thus, it is really of great importance 

to study the interaction and co-evolution between cof-

fee and H. vastatrix. Coffee-H. vastatrix rust interac-

tions are governed by the gene-for-gene relationship 

[6]. To date, transcriptome and proteome methods has 

been used to find resistance genes [7,8]. In spite of 

the reported dynamics of H. vastatrix effector candi-

date genes (HvECs), the existing knowledge of re-

sistance genes (SH1-SH9) is still limited [9]. The plant 

immune system consists of both constitutive and in-

ducible mechanisms [10]. Defensin is an important 

peptide family of plant constitutive immunity [11]. 

Some exogenous defensin genes have been success-

fully transformed in crops and improved the disease 

resistance of transgenic lines [12-14]. Although re-

sistance genes (SH1-SH9) has already been used for 

coffee breeding, there are however few reports on 

coffee defensin. Here, we present the genome-wide 

analysis of defensin-like genes in C. arabica by the 

released bioinformation on Phytozome. The results 

provide an overview for defensin-like genes in C. 

arabica and will serve as a guideline for future study.  

 

 

 

 

2. MATERIALS AND METHODS  

2.1. Sequence retrieval 

The seed sequences of conserved domain in defensin 

proteins were downloaded from Pfam database under 

the accession of PF00304 [15]. These sequences were 

used as query to search against C. arabica genome 

database from Phytozome [16] by using TBLASTN 

with a cut off Expected value (E-value) of 10−5 [17]. 

The information of these genes on scaffold position 

were also obtained. 

 

2.2. Phylogenetic analysis 

A neighbor-joining (NJ) phylogenetic tree was con-

structed for defensin proteins using the Molecular 

Evolutionary Genetics Analysis (MEGA) software 

version 7.0 [18]. Bootstrap values from 1000 trials 

were used for constructing the most parsimonious 

tree.  

 

2.3. Intron analysis 

Obtained genomic and coding sequences of defensin-

like genes in C. arabica were employed for intron 

analysis. The exon/intron structures were analyzed 

using the online Gene Structure Display Server 

(GSDS) with coding sequences and genomic se-

quences [19]. 

 

2.4. Motif analysis 

Amino acid sequences were aligned using Clustal X 

[20]. The alignment was employed for motif analysis 

in DNAMAN software (Lynnon Corporation, 

VauDREUIL-DORION QC Canada) [21]. 

 

2.5. Structure modeling 

Translated protein sequences of defensin-like genes 

in C. arabica were used for structure modeling by 

PHYRE2 Protein Fold Recognition Server [22].  

 

3. RESULTS 

3.1. Identification of defensin-like genes in C. arabi-

ca 

After removing the redundant sequences, we obtained 

18 defensin-like genes in the genome database of C. 

arabica line UCG-17 (Table 1). Their genomic se-

quence lengths were from 476-1065 base pairs (bp). 

The coding sequence length of these genes ranged 
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from 225 to 321 bp, encoding peptides of 74-106 

amino acids (aa). Their scaffold locations were also 

obtained when sequence retrieval, which indicated 

that 5 gene clusters, were formed. 

 

3.2. Phylogenetic and intron analysis 

The 18 protein sequences were clustered into 2 

groups (Figure 1A). Group I contained 16 sequences, 

which is far more than Group II. Group I was further 

divided into 2 subgroups with each containing 8 se-

quences. Intron/exon for each defensin-like gene was 

analyzed according to their genomic and coding se-

quences (Figure 1B). All the genes contained one (1) 

intron, respectively. And the intron lengths were from 

239-828. 

 

Figure 1. Phylogenetic analysis of defensin proteins in C. arabi-

ca (A). Bootstrap values were from 1000 trials. Intron/exon con-

figurations of defensin-like genes in C. arabica (B). Introns and 

exons drawn to scale with the full encoding regions of their re-

spective genes with boxes indicating the exons, and lines repre-

senting introns. 

Table 1. Defensin-like gene family in C. arabica. 

Accession 
Genomic 

(bp) 

CDS 

(bp) 

Protein 

(aa) 

Intron 

Length (bp) 
Position Strand 

Scaffold574.79 1065 237 78 828 Scaffold574:831842-832906 + 

Scaffold576.489 690 321 106 369 Scaffold576:3566049-3566738 + 

Scaffold576.490 495 237 78 258 Scaffold576:3568764-3569258 + 

Scaffold584.42 502 246 81 256 Scaffold584:412397-412898 + 

Scaffold626.198 884 225 74 659 Scaffold626:2859425-2860308 - 

Scaffold637.339 666 255 84 411 Scaffold637:2549770-2550435 + 

Scaffold637.340 638 234 77 404 Scaffold637:2552861-2553498 + 

Scaffold637.341 491 237 78 254 Scaffold637:2554488-2554978 + 

Scaffold638.445 839 237 78 602 Scaffold638:5246186-5247024 + 

Scaffold663.65 502 246 81 256 Scaffold663:766014-766653 + 

Scaffold671.1114 693 321 106 372 Scaffold671:9167520-9168212 + 

Scaffold671.1115 476 237 78 239 Scaffold671:9169969-9170444 + 

Scaffold2240.6 551 312 103 239 Scaffold2240:30833-31383 - 

Scaffold2240.7 693 321 106 372 Scaffold2240:33139-33831 - 

Scaffold2596.106 677 246 81 431 Scaffold2596:734206-734882 + 

Scaffold2651.21 895 225 74 670 Scaffold2651:351557-352451 - 

Scaffold2651.23 897 225 74 672 Scaffold2651:367736-368632 - 

Scaffold2651.27 895 225 74 670 Scaffold2651:402056-402950 - 

3.3. Motif analysis and structure modeling 

Plant defensin family contains the gamma thionin domain (PF00304), which was also observed in C. arabica 

defensins (Figure 2). The alignment result indicated that two gene pairs shared the same protein sequences, i.e. 

Scaffold671.1114/2240.7 and Scaffold2651.21/2651.23/2651.27/626.198. We further analyzed their nucleotide 

sequences and found that the genomic sequences of Scaffold671.1114 and Scaffold2240.7 were the same, also 

between Scaffold2651.21 and Scaffold2651.27. Scaffold2651.23 shared the same sequence in coding region 

with Scaffold2651.21 and Scaffold2651.27, but an insertion mutation in intron region (Figure 3). Scaf-

fold626.198 had two deletion mutations in intron region and two synonymous mutation in coding region. Be-

sides, there was frameshift mutation caused by single nucleotide deletion in Saffold2240.6 (Figure 4). 
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Figure 4. Frameshift mutation caused by single nucleotide dele-

tion in coding sequence of Scaffold2240.6. The numbers repre-

sent the length of the sequence. 

 

We further constructed the protein structure models 

by PHYRE2 Protein Fold Recognition Server. All the 

16 proteins in Group I matched the d1gpsa model of 

PHYRE2 (Figure 5A), while the 2 proteins in Group 

II matched the d1n4na model from PHYRE2 (Figure 

5B). 

Figure 5. Structure models of proteins in Group I (A) and Group 

II (B) based on d1gpsa and d1n4na models from PHYRE2, re-

spectively. 

 

4. DISCUSSION 

In this study, we successfully identified 18 defensin-

like genes in C. arabica genome, which is far less 

than those characterized in Arabidopsis genome [23]. 

Besides, a recent study revealed a similar scale of 

defensin-like genes in sorghum (10), maize (20), rice 

(12) and brachypodium (9) genomes [24]. Such a 

result might however not be adequate enough to pro-

vide understanding on the evolution pattern of defen-

sin-like genes. According to phylogenetic analysis 

and alignment conducted, we found that two gene 

pairs (Scaffold671.1114/2240.7 and Scaf-

fold2651.21/2651.27) shared the same sequence, re-

spectively. Scaffold671.1114 and Scaffold2240.7 

could very likely be allelic genes. The C. arabica 

genome was not assembled as high quality as C. 

canephora, which further emphases the difficulty for 

genome assembly for tetraploid [25]. More further 

research works are still needed to confirm the relation 

between Scaffold671.1114 and Scaffold2240.7, de-

spite the assertion that Scaffold2651.21 and Scaf-

fold2651.27 are duplicated genes. Because they are 

from the same scaffold, the 5 gene clusters should be 

also generated by whole genome duplication [26]. 

Duplicated genes are commonly accompanied with 

expansion of gene family and mutation of gene func-

tion. Our result provided an example for gene muta-

tion at early stage (Figure 3). Besides, the frameshift 

mutation in Scaffold2240.6 is believed to cause the 

change in the tail part of the protein sequence (Figure 

2; Figure 4). This mutation might cause an irreversi-

ble change of the protein function. It is worth noting 

that the 16 defensins categorized in Group I matched 

d1gpsa model in PHYRE2, and their structure models 

were consistent with reported defensins [11]. Moreo-

Figure 2. Alignment of defensin proteins in C. arabica. Conserved cysteine residues were highlighted with red 

dot. 

Figure 3. Mutation configurations (genomic sequence) of Scaffold2651.23 and Scaffold626.198 compared with 

Scaffold2651.21/2651.27. The numbers represent the length of the sequence. 
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ver, Group II defensins only had partial structure 

compared with Group I, which might weaken their 

antifungal activity. Recombinant expression analysis 

for these defensins in C. arabica would be necessary 

and efficient to characterize their functions in future 

studies [27]. 
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