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ABSTRACT 

This paper aims to evaluate the kinetics of hydroxylation for two distinct magnesias from Brazilian 

mineral sources regarding their purity: A – 92.44wt% and B – 98.20wt% of MgO. The magnesias were 

characterized and hydroxylated in a CSTR (1,0L) under: 80°C, stirring rate of 950rpm and 30%w/w of 

solids, in triplicate. The results showed that the presence of natural impurities in caustic magnesia (Fe, 

Mn, Al, Ca) hindered the advance of the reaction, but not at the beginning, when the hydroxylation was 

similar for both samples, what is associated with the similar values of their surface area. The reaction 

stabilization was observed after two hours for both samples: Sample A – 35.15%; Sample B – 46.43%. 

The natural impurities of caustic magnesia influenced the development of hydroxylation after 30 

minutes, causing a retardant effect probably due to their behavior as a physical-chemical barrier, 

hindering the ions diffusion though the solid matrix.  
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1.INTRODUCTION 

Caustic magnesia (CM) is reactive magnesia that stands out as a derivative from magnesite 

ores, presenting a high content of MgO (at least 85wt%) which has higher reactivity and 

surface area than sinter magnesia [1, 2, 3]. CM is obtained by mineral processing of magnesite 

ore, followed by calcination at temperatures ranging from 800 to 1000°C, which can influence 

the products final composition [4, 5].  

Brazilian deposits of magnesium are usually from Veitsch type, characterized by the 

presence of calcium, iron, manganese, aluminum and silicon as main secondary elements 

present in the following minerals: magnesite, calcite, dolomite, talc and chlorite [4].  

The heat treatment focus on withdrawal of the carbonate group (magnesite) and 

periclase formation, according to equation 1. Nevertheless, during the calcination, additional 

components can undergo parallel reactions, determining final magnesia composition and 

behavior, according to table 1 [6, 7, 8, 9, 10, 11, 12]. Therefore, thermal treatment is decisive to 

determine the components contents and reactive magnesia characteristics, as analyzed in 

many studies [13, 14, 15, 16, 17, 18].  
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MgCO3(s)  → MgO(s) + CO2(g)     (1) 
 

Table 1.Description of impurities behavior during calcination of magnesite ore. 

 

 

The caustic magnesia chemical composition define its applications – as fertilizer, cements, 

animal feed supplement and neutralizing agent – and the process to obtain derivative products 

– such as magnesium hydroxide (HM).   

HM is a relevant magnesium material that has broad applicability, from flame retardant 

for polymers to neutralizing agent for effluent treatment. Its use as neutralizing agent is 

increasing in some countries because magnesium hydroxide has a high alkalinity (27%) when 

compared to traditional agents (calcium and sodium hydroxide) [19, 20, 21, 22].  

Largely, HM data-sheet requires a high content of Mg(OH)2, at least 90 wt%, and it is 

obtained by magnesium oxide reaction with water in a CSTR reactor (equation 2), occurring a 

molecular expansion and monocrystals formation [23, 24, 25].  

 

MgO(s) + H2O (l)→ Mg(OH)2(s)                   (2) 

 

However, it is necessary to consider the influence of other magnesia components, besides 

periclase, as the presence of boron oxide that can retard the hydroxylation rate - an additive 

with low reactivity and solubility in water [26]. In the study of Jin & Al-Tabbaa (2015), it was 

verified that caustic magnesia characteristics vary significantly in terms of chemical 

composition, which affects the strength of cement blends. Impurities, such as CaO, can 

promote beneficial to strength development.  

As Brazilian reactive magnesia has many natural components, MgO is consider the main 

one and the others can be considered natural impurities - which depends on the mineral 

source - and they have different similar behavior in water due to low solubilization and no 

reaction, except calcite that forms calcium hydroxide [27, 6, 7, 8, 28, 29, 30,  31].  

In turn, this paper aims to evaluate the effect of natural impurities in Brazilian caustic 

magnesia on the MgO hydroxylation kinetic. 

 
 

 

 

 

Component Temperature 

(°C) 

Peak  

(°C) 

Reactions 

Magnesite 500 - 900 660 MgCO3(s) → MgO(s) + CO2(g) 

Clorite 

500 - 600 550 Al2Mg5Si3O10(OH)8(s) → Al2Mg5Si3O11(OH)6(s) + H2O(l) 

750 - 900 850 
Al2Mg5Si3O11(OH)6(s) → Al2Mg5Si3O11(OH)2(s) + H2O(l) → 

Al2Mg5Si3O10(OH)8(s)  

Dolomite 600 - 1100 
820; 

920 
MgCa(CO3)2(s) → CaO(s) + MgO(s) + 2CO2(g) 

Calcite 700 - 1100 950 CaCO3(s) → CaO(s) + CO2(g) 

Talc 950 - 1050 990 Mg3(Si4O10)(OH)2(s) → 3MgO(s) + 4SiO2(s) + H20(l) 
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2.EXPERIMENTAL 

Caustic magnesia samples, obtained from two different Brazilian magnesite deposits, were 

characterized in terms of physical, chemical and mineralogical properties. 

The analysis of specific surface area was carried out by BET method (using nitrogen at 

150°C) with the pore size distribution being accessed by the BJH model in the Quantachrome 

Instrument (Model 1000). The helium gas pycnometer was used to determine the caustic 

magnesia samples density using the Stereopycnometry (SPY- 3). The total content of MgO and 

others crystalline phases was determined by XRF: samples (1,0g) were prepared in tablets 

with boric acid and the analysis was performed by excitation using a rhodium anode beam; 

eight scans were done with a specific crystal analyzer (PHILIPS - PW 2510). The weight losses, 

at specific temperatures, was assessed by thermogravimetric analyses using 20mL/min 

nitrogen rate (Shimadzu - TGA 50) under nitrogen atmosphere from 18 to 900°C (heating rate - 

20°C/ min). The crystalline phases of magnesia samples were determined using 

diffractometer with CuKα radiation (Philips - PW 1710). Magnesias were recovered with gold 

and they were submitted to microscopy analysis SME (Ionization Vacuum Gouge/ JVG-N1), 

simultaneously, the microanalysis by Energy Dispersion (EDS) was performed in the same 

equipment. 

The experiments were processed in 1.0L CSTR reactor at 80°C, 950 rpm, 5wt% of solids 

in pulp and reaction times from 0 to 150 minutes [32], [33]. Conversion of the reaction was 

calculated based on the weight lost by sample calcination at 500°C, carried out in triplicate, 

considering the MH decomposition temperature (400°C) (Equation 2) [34], [35] [36] [37]. This 

analysis ignored the possible hydroxylation of magnesite, because this happens only at high 

temperatures, at least 150°C [38]. 
 

Mg(OH)2(s) → MgO(s) + H2O(l)                 (2) 
 

The true quantity of magnesium hydroxide obtained by hydroxylation (MHtrue) was calculated 

by the difference between the total amount of magnesium hydroxide (HMtotal) (determined by 

calcination) and the initial amount of magnesium hydroxide in the samples (MHinitial) 

(determined by TG analysis), Equation 3. The hydroxylation rates were defined according to 

the complete reaction of the available periclase in each sample (MHcomplete), Equations 4 and 5.  

 
MHtrue = MHtotal - MHinitial                   (3) 

 

% Xtrue = MHtrue/ MHcomplete                (4) 

 

% Xtotal = MHtotal/ MHcomplete             (5) 

 

 
3. RESULTS AND DISCUSSION 

3.1. Characterization 

Chemical and physical properties of caustic magnesia samples are presented in Table 2. It is 

possible to verify that both samples have MgO content higher than 90% and  sample A shows 

more impurities (mainly silicon, iron and calcium) while sample B presents the higher purity, 

reporting minor amounts of calcium, iron and aluminum.  
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Table 2 Physical and chemical properties of caustic calcined magnesias 

 
Chemical Composition  by XRF 

 
Sampl

e 
MgO CaO Fe2O3 Al2O3 SiO2 MnO P2O5 K2O TiO2 Na2O 

A 92.44 1.41 2.20 0.50 3.15 0.25 0.01 0.01 0.03 0.00 

B 98.20 0.78 0.46 0.24 0.18 0.11 0.01 0.01 0.01 0.00 

                      

Physical Properties  

 

Sampl

e 
S.S.A.  

(m²/g) 
Particle size  

(μm, D50/D80) 
Density  

(g/cm³) 
Porosity  

(cm²/g) 

Pore 

diameter  

(nm) 

A 1.4 7.9/ 15.1 3.4 0.1 25.5 

B 0.8 8.3/ 14.9 3.7 0.1 34.3 
                      

 

 

The diffractograms (Figs. 1 and 2) show that the major crystalline phase is periclase (MgO) for 

both samples and the others phases were identified by XRF results. Magnesia A has many 

natural impurities: chlorite (Al2Mg5Si3O10(OH)8), calcite (CaCO3), dolomite (CaMg(CO3)2), 

magnesite  (Mg(CO3)), brucite (Mg(OH)2) and talc (Mg3Si4O10(OH)2). Magnesia B only presents 

calcite, in addition to periclase.   

 

 

 
Figure 1 XRD pattern of caustic magnesia A. B=Brucite; C=Calcite;  CL=Chlorite; D=Dolomite; 

M=Magnesite; P=Periclase; T=Talc. 
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Figure 2 XRD pattern of caustic magnesia B. P=Periclase. 

 

Table 3 shows the mass loss at 500oC for magnesium compounds by the thermogravimetric 

analysis, which made possible to quantify the amount of periclase and impurities - which did 

not hydroxylate [39].  

 
Table 3 Unavailable phases to hydroxylate in magnesias, according to TG analysis. 

 

Phases (wt%) 

Sample A Sample B 

Mass loss MgO  
Mineral 

(%) 
Mass loss MgO  

Mineral 

(%) 

Mg(OH)2 

Brucite 
3.254 7.380 10.681 1.961 4.453 6.444 

Al2Mg5Si3O10(OH)

8 

Chlorite 

0.405 1.531 4.223 0.088 0.331 0.914 

MgCO3 

Magnesite 
0.969 0.899 1.880 0.265 0.246 0.515 

MgCa(CO3)2 

Dolomite 
0.303 0.141 0.643 0.176 0.082 0.374 

CaCO3 

Calcite 
0.110 0.000 0.253 0.011 0.000 0.000 

Mg3(Si4O10)(OH)2 

Talc 
0.080 0.181 0.829 0.000 0.000 0.000 

 

 

Fig. 3 shows the morphology of the samples by SEM: A - lamellar shape, irregular surfaces and 

sizes; B - undefined shape, irregular surfaces and sizes. While, EDS highlights the presence of 

impurities on the surface: A - talc and magnesite; B - dolomite and magnesite. The presence of 
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Mg(CO3)2 is associated with MgO carbonation by carbon dioxide present in the atmosphere 

[40], [41].  

 

 
Figure 3 SEM-EDS analysis of caustic magnesias A (a) and B (b). 

 

The minerals contained in samples A and B, identified by XRD, exhibit low water solubility 

(magnesite, dolomite and calcite) or insolubility (talc and chlorite). Moreover, they do not 

show enhanced reactivity with water under the adopted conditions for the hydroxylation 

experiments [6, 7, 8, 29, 30, 42, 44]. It supports the methodology established in this work to 

determine the hydration extension by Equations 4 and 5.   

 

 

Hydroxylation Results 

The results shows that magnesia samples studied already have an initial content of magnesium 

hydroxide. Therefore, it is important to highlight that hydroxylation occurred only for the 

periclase content and the conversion values were calculated considering this MgO content 

(called MgO available) [26]. The method was settled by the difference between MgO total 

quantity, obtained by XRF, and the MgO content for minority and majority magnesium phases 

that are not able to hydroxylate, according to Table 4. 

 
Table 4 Magnesium oxide quantification in caustic magnesia. 

MgO Analysis Sample A (wt%) Sample B (wt%) 

Total XRF 92.44 98.20 

Unavailable TGA 10.68 6.44 

Available XRF - TGA 81.76 91.76 

 

Sample B has a higher quantity of MgO, whereas sample A presents a larger quantity of 

Mg(OH)2. The total reaction conversion was determined by the mass lost during the calcination 

of samples at 500°C. Thereafter, the true reaction conversion is based on this mass lost, 
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discounting the initial content of magnesium hydroxide, according to Table 5. The 

hydroxylation curves are shown in Figs. 4 and 5. The values were obtained in tests carried out 

in triplicate, and the errors bars indicate a high reproducibility of the results, medium standard 

deviation equal to 1.07. 

 

 
 

Figure 4. True conversion of caustic magnesia hydroxylation at 80oC, in the CSTR at 5wt% 

solids and 950 rpm. 
 

 
 

Figure 5. Total Conversion of caustic magnesias hydroxylation at 80oC, in the CSTR at 5wt% 

solids and 950 rpm. 
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The true rates allowed verifying the hydroxylation of each sample during the process. Initially, 

true conversion was similar for both samples (30 minutes) and after this time, sample B showed 

higher values. After 120 minutes it was not observed a significant change in the conversion, 

which indicates the equilibrium time for both samples with different final conversions (A – 

35.15% and B – 46.43%), which is probably linked to the different quantities of HM initially 

present on caustics magnesias (A – 10.81wt% and B – 6.44wt%). Furthermore, this rate is 

essential to determine the total content of magnesium hydroxide in the products. 

According to the literature, the magnesia hydroxylation includes the following steps:  1 - 

Water adsorption on the surface of the hydroxide and simultaneous diffusion of water in the 

porous structure of the MgO particles;  2 - Dissolution of magnesium oxide into the solution, or 

inside the solution contained in the pores; 3 - Supersaturation of the solution, nucleation and 

precipitation of Mg(OH)2 on the MgO surface [24, 27].  

This mechanism is well accepted to low content impurities magnesias. However, in this 

work, a low impure magnesia was evaluated, in order to verify the behavior and the effect of 

these impurities in the hydroxylation (hydration) reaction. 

At the beginning, the similar conversions of hydration can be related to similar surface 

area for both samples (17.29m²/g for magnesia A compared to 16.51m²/g for magnesia B). In 

addition, the magnesium oxide present on the surface is prompt to dissolve, and when the 

solution reaches the supersaturation, after nucleation, the precipitation takes place. The 

presence of impurities in magnesia, as shown in Figure 3, magnesite, talc and dolomite, did not 

affect the initial development of hydroxylation. Talc is hydrophobic; magnesite and dolomite 

also are of low solubility in water and consequently lower reactivity with water [6, 7, 8, 27, 28, 

29, 30, 33]. 

However, during the progress of the reaction, between 30 to 90 minutes, the ash layer of 

MH grows around and inside the polycrystalline particle of magnesium oxide, which is an 

additional barrier to the diffusion of reagents and products. Thus, the precipitation continues in 

a slower rate, until the diffusion of water into the MgO particle is blocked, leading to the end of 

magnesium hydroxide formation [43]. It is important to highlight that magnesium hydroxide 

precipitation into the pores the water diffusivity in the solid matrix. The lower true 

hydroxylation for magnesia observed for Magnesia A compared to Magnesia B may be linked 

to the presence of impurities, that are an additional barrier to diffuse ions and water into the 

pores, explaining the results. Though, this aspect deserves additional studies. 

 
4. CONCLUSIONS 

The natural impurities in caustic magnesia influence the development of hydroxylation kinetic 

after 30 minutes, causing a retardant effect probably due to their physical-chemical barrier 

behavior.  

The caustic magnesia samples characterization was essential to access physical, 

chemical and mineralogical properties of each sample, which permitted to evaluate their 

influence on the hydroxylation reaction. The association of X-ray diffraction, to identify 

crystalline phases, with thermal analysis allowed quantifying the true and total conversion. This 

quantification method establishment was essential to evidence the impurities effect in 

hydroxylation of magnesia. The presence of natural impurities (talc, magnesite and dolomite) 

did not affected the initial precipitation of magnesium hydroxide (until 30 min), but after this 

time the reaction was retarded and the final conversion was lower (47% for the magnesia B 

compared to 52% for magnesia A), due to the presence of impurities.  
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