Activity and stability of the catalytic hydrogel membrane reactor for treating oxidized contaminants.


University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA. Electronic address: [Email]


The catalytic hydrogel membrane reactor (CHMR) is an interfacial membrane process that uses nano-sized catalysts for the hydrogenation of oxidized contaminants in drinking water. In this study, the CHMR was operated as a continuous-flow reactor using nitrite (NO2-) as a model contaminant and palladium (Pd) as a model catalyst. Using the overall bulk reaction rate for NO2- reduction as a metric for catalytic activity, we evaluated the effect of the hydrogen gas (H2) delivery method to the CHMR, the initial H2 and NO2- concentrations, Pd density in the hydrogel, and the presence of Pd-deactivating species. The chemical stability of the catalytic hydrogel was evaluated in the presence of aqueous cations (H+, Na+, Ca2+) and a mixture of ions in a hard groundwater. Delivering H2 to the CHMR lumens using a vented operation mode, where the reactor is sealed and the lumens are periodically flushed to the atmosphere, allowed for a combination of a high H2 consumption efficiency and catalytic activity. The overall reaction rate of NO2- was dependent on relative concentrations of H2 and NO2- at catalytic sites, which was governed by both the chemical reaction and mass transport rates. The intrinsic catalytic reaction rate was combined with a counter-diffusional mass transport component in a 1-D computational model to describe the CHMR. Common Pd-deactivating species [sulfite, bisulfide, natural organic matter] hindered the reaction rate, but the hydrogel afforded some protection from deactivation compared to a batch suspension. No chemical degradation of the hydrogel structure was observed for a model water (pH > 4, Na+, Ca2+) and a hard groundwater after 21 days of exposure, attesting to its stability under natural water conditions.


Catalytic,Hydrogel,Hydrogenation,Nano,Oxidized contaminant,Palladium,

OUR Recent Articles