Assessment of water contamination and health risk of endocrine disrupting chemicals in outdoor and indoor swimming pools.


Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China. Electronic address: [Email]


The occurrence of endocrine disrupting chemicals (EDCs) in swimming pool waters has been scarcely investigated. In this study, the concentrations of 20 EDCs (4 phenols, 6 estrogens, 4 progestogens, 5 androgens, and 1 pharmaceutical) in 40 outdoor and indoor swimming pools in Changsha, China were investigated. Out of them, two phenols (bisphenol A and 4-tert-octylphenol), three estrogens (17β-estradiol, 17ɑ-ethinlestradiol (EE2), and hexestrol), one pharmaceutical (caffeine), and two progestogens (progesterone and levonorgestrel) were detected in the collected samples. The androgens were not detected. Bisphenol A and caffeine were the dominant EDCs at concentrations of ND-23.22 ng/L and ND-39.08 ng/L, respectively. The levels of caffeine were significantly higher in indoor swimming pools (11.15 ng/L in average) than those in outdoor pools (1.90 ng/L in average) (p < 0.05), owing to the less sun's UV radiation and less use of sunscreens containing caffeine. The progestogens (progesterone and levonorgestrel) and estrogens (17β-estradiol and hexestrol) were only detected in outdoor swimming pools. The detection frequencies and concentrations of bisphenol A and caffeine in downtown pools were significantly higher than those in outskirt pools. Besides, the correlations between the concentrations of EDCs and water quality parameters evaluated by the Spearman correlation analysis implied that residual chlorine had strong oxidant capable to bisphenol A and suggested that caffeine could be a potential indicator of organic contamination in swimming pool water. Finally, a quantitative risk assessment revealed that non-athletic child and athletic adult female were vulnerable subpopulations. The EDItotal of EE2 for athletic child, non-athletic female, non-athletic male, and non-athletic child were higher than ADIEE2 adopted by Australia and the EDItotal of EE2 for athletic female and athletic male were higher than ADIEE2 adopted by the United States.


Correlation analysis,Endocrine disrupting chemicals,Health risk assessment,Swimming pools,

OUR Recent Articles