Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives.

Affiliation

National Institute, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia. Electronic address: [Email]

Abstract

Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.

Keywords

Cytotoxicity,Esterification,Lipase,Lung and breast cancer cell lines,Marchantin A,

OUR Recent Articles