Comparative proteomic analysis of oil palm (Elaeis guineensis Jacq.) during early fruit development.

Affiliation

Kok SY(1), Namasivayam P(2), Ee GC(3), Ong-Abdullah M(4).
Author information:
(1)Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board
(MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia; Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
(2)Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
(3)Department of Chemistry, Faculty of Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
(4)Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board
(MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia. Electronic address: [Email]

Abstract

To gain insights on protein changes in fruit setting and growth in oil palm, a comparative proteomic approach was undertaken to study proteome changes during its early development. The variations in the proteome at five early developmental stages were investigated via a gel-based proteomic technique. A total of 129 variant proteins were determined using mass spectrometric analysis, resulting in 80 identifications. The majority of the identified protein species were classified as energy and metabolism, stress response/defence and cell structure during early oil palm development representing potential candidates for the control of final fruit size and composition. Seven prominent protein species were then characterised using real-time polymerase chain reaction to validate the mRNA expression against the protein abundant profiles. Transcript and protein profiles were parallel across the developmental stages, but divergent expression was observed in one protein spot, indicative of possible post-transcriptional events. Our results revealed protein changes in early oil palm fruit development provide valuable information in the understanding of fruit growth and metabolism during early stages that may contribute towards improving agronomic traits. BIOLOGICAL SIGNIFICANCE: Two-dimensional gel electrophoresis coupled with mass spectrometry approach was used in this study to identify differentially expressed proteins during early oil palm fruit development. A total of 80 protein spots with significant change in abundance were successfully identified and selected genes were analysed using real time PCR to validate their expression. The dynamic changes in oil palm fruit proteome during early development were mostly active in primary and energy metabolism, stress responses, cell structure and protein metabolism. This study reveals the physiological processes during early oil palm fruit development and provides a reference proteome for further improvements in fruit quality traits.