Contributory role of microRNAs in anti-cancer effects of small molecule inhibitor of telomerase (BIBR1532) on acute promyelocytic leukemia cell line.


Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address: [Email]


Telomerase-mediated immortalization and proliferation of tumor cells is a promising anti-cancer treatment strategy and development of potent telomerase inhibitors is believed to open new window of treatments in human malignancies. In the present study, we found that BIBR1532, a small molecule inhibitor of human telomerase, exerted cytotoxic effects on a panel of human cancer cells spanning from solid tumors to hematologic malignancies; however, as compared with solid tumors, leukemic cells were more sensitive to this inhibitor. This was independent of molecular status of p53 in the leukemic cells. The results of a miRNA PCR array revealed that BIBR1532-induced cytotoxic effects in NB4, the most sensitive cell line, was coupled with alteration in a substantial number of cancer-related miRNAs. Interestingly, most of these miRNAs were found to act as tumor suppressors with validated targets in cell cycle or nuclear factor (NF)-κB-mediated apoptosis. In accordance with a bioinformatics analysis, our experimental studies showed that BIBR1532-induced apoptosis is mediated, at least partly, by inhibition of NF-κB. Moreover, we found that the alteration in the expression of miRNAs was coupled with the alteration in the cell cycle progression. To sum up with, a straightforward interpretation of our results is that telomerase inhibition using BIBR1532 not only induced CDKN1A-mediated G1 arrest in NB4, but also resulted in a caspase-3-dependent apoptotic cell death mostly through suppression of NF-κB axis.



OUR Recent Articles