Design, synthesis of 4,5-diazafluorene derivatives and their anticancer activity via targeting telomeric DNA G-quadruplex.

Affiliation

Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China. Electronic address: [Email]

Abstract

In our work, 19 novel 4,5-diazafluorene derivatives (11a-d, 12a-d, 13a-d, 14a-c, 15c, 16a-c) bearing a 1,3-disubstituted pyrazol/thioxothiazolidinone or thioxothiazolidinone-oxadiazole moieties were designed, synthesized, preliminarily explored for their antitumor activities and in vitro mechanism. All compounds showed different values of antiproliferative activity against A549, AGS, HepG2 and MCF-7 cell lines through CCK-8. Especially, the compound 14c exhibited the strongest activity and best selectivity against A549 cells with an IC50 1.13 μM and an SI value of 7.01 relative to MRC-5 cells, which was better than cisplatin (SI = 1.80) as a positive control. Experimental results at extracellular level demonstrated that compounds 14a-c could strongly interact with the G-quadruplex(es) formed in a 26 nt telomeric G-rich DNA, in particular, the 14c exhibits quite strong binding affinity with an association equilibrium constant (KA) of 7.04(±0.16) × 107 M-1 and more than 1000-fold specificity to G4-DNA over ds-DNA and Mut-DNA at the compound/G4-DNA ratio of 1:1. Further trap assay ascertained that compounds 14a-c owned strong inhibitory ability of telomerase activity in A549 cells, suggesting that these compounds have great possibility to target telomeric G-quadruplexes and consequently indirectly inhibit the telomerase activity. In addition, it is worthy of note that the remarkable inhibitory effects of 14a-c on the mobility of tested cancer cells were observed by wound healing assays. Furthermore, molecular docking and UV-Vis spectral results unclose the rationale for the interaction of compounds with such G-quadruplex(es). These results indicate that the growth and metastasis inhibition of cancer cells mediated by these 4,5-diazafluorene derivatives possibly result from their interaction with telomeric G-quadruplexes, suggesting that 4,5-diazafluorene derivatives, especially 14c, possess potential as anticancer drugs.

Keywords

4,5-Diazafluorene,Antiproliferative activity,Cancer cells,Telomerase activity,Telomeric G-quadruplex,

OUR Recent Articles