Direct compaction properties of Zingiberis Rhizoma extracted powders coated with various shell materials: Improvements and mechanism analysis.

Affiliation

College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China. Electronic address: [Email]

Abstract

Direct compaction (DC) attracts more and more attention for tablet manufacturing; however, its application in natural plant product (NPP) tablets is still extremely limited. In this study, 8 kinds of composite particles (CPs) based on the Zingiberis Rhizoma extracted powder (ZR) (a natural plant product powder with poor DC properties) were prepared with different shell materials, including hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), dextran, inulin, mannitol, silica, and their combinations. Their physical properties and compacting parameters were characterized comprehensively. The results demonstrated that (i) fluid bed coating was not a simple process of superposition and transmission of the physical properties of raw materials; and (ii) all the shell materials studied could improve the DC properties of problematic ZR to some degree and the combination of 7% HPMC and 1% silica showed to be the best to markedly improve both the compactibility and flowability of ZR. As a whole, by virtue of the design of core-shell particles, qualified tablets with high ZR loadings were successfully produced via continuous DC in this study. These findings are beneficial to boosting the development of natural plant tablets through DC.

Keywords

Compactibility,Composite particle,Direct compaction,Flowability,Mechanism analysis,Natural plant product,