Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent.


Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas-Instituto Politécnico Nacional, Av. IPN No. 2580, Gustavo A. Madero, C.P. 07340 Ciudad de México, Mexico. Electronic address: [Email]


The elimination of cephalexin (CPX) using electro-generated Cl2-active on Ti/RuO2-IrO2 anode was assessed in different effluents: deionized water (DW), municipal wastewater (MWW) and urine. Single Ti/RuO2 and Ti/IrO2 catalysts were prepared to compare their morphologies and electrochemical behavior against the binary DSA. XRD and profile refinement suggest that Ti/RuO2-IrO2 forms a solid solution, where RuO2 and IrO2 growths are oriented by the TiO2 substrate through substitution of Ir by Ru atoms within its rutile-type structure. SEM reveals mud-cracked structures with flat areas for all catalysts, while EDS analysis indicates atomic ratios in the range of the oxide stoichiometries in the nominal concentrations used during synthesis. A considerably higher CPX degradation is achieved in the presence of NaCl than in Na2SO4 or Na3PO4 media due to the active chlorine generation. A faster CPX degradation is reached when the current density is increased or the pH value is lowered. This last behavior may be ascribed to an acid-catalyzed reaction between HClO and CPX. Degradation rates of 22.5, 3.96, and 0.576 μmol L-1 min-1 were observed for DW, MWW and urine, respectively. The lower efficiency measured in these last two effluents was related to the presence of organic matter and urea in the matrix. A degradation pathway is proposed based on HPLC-DAD and HPLC-MS analysis, indicating the fast formation (5 min) of CPX-(S)-sulfoxide and CPX-(R)-sulfoxide, generated due the Cl2-active attack at the CPX thioether. Furthermore, antimicrobial activity elimination of the treated solution is reached once CPX, and the initial by-products are considerably eliminated. Finally, even if only 16% of initial TOC is removed, BOD5 tests prove the ability of electro-generated Cl2-active to transform the antibiotic into biodegradable compounds. A similar strategy can be used for the abatement of other recalcitrant compounds contained in real water matrices such as urine and municipal wastewaters.


Active chlorine,Electrochemical oxidation,RuO(2)-IrO(2),Urine effluent,Wastewater treatment,β-Lactam,