Evaluation of the dimensional accuracy of thermoformed appliances taken from 3D printed models with varied shell thicknesses: An in vitro study.

Affiliation

Kenning KB(1), Risinger DC(1), English JD(1), Cozad BE(1), Harris LM(1), Ontiveros JC(2), Kasper FK(3).
Author information:
(1)The University of Texas Health Science Center at Houston School of Dentistry, Department of Orthodontics, 7500 Cambridge Street, Suite 5130, Houston, Texas 77054, USA.
(2)The University of Texas Health Science Center at Houston School of Dentistry, Department of Restorative Dentistry and Prosthodontics, 7500 Cambridge Street, Suite 5350, Houston, Texas 77054, USA.
(3)The University of Texas Health Science Center at Houston School of Dentistry, Department of Orthodontics, 7500 Cambridge Street, Suite 5130, Houston, Texas 77054, USA. Electronic address: [Email]

Abstract

OBJECTIVE: Clinicians make numerous decisions when 3D printing models for fabrication of thermoformed appliances, including printing solid or hollow models. While hollow models can reduce resin use, models intended for thermoformed appliance fabrication must be printed with sufficient thickness to withstand thermoforming. The aim of the study was to determine for hollow 3D printed orthodontic models if there is an effect of shell thickness on the dimensional accuracy of retainers thermoformed upon them as compared with solid models and, if so, to identify the minimum shell thickness that ensures dimensional accuracy of the thermoformed retainer under the conditions investigated. MATERIAL AND METHODS: Thermoformed appliances were fabricated on 3D printed models of six shell thicknesses: 1.0mm, 1.5mm, 2.0mm, 2.5mm, 3.0mm, and solid (n=10/group). The models were scanned before and after thermoforming. Thermoformed appliances were captured by two methods: scanning a polyvinylsiloxane casting of the appliance and scanning the appliance interior surface (intaglio surface). Each model-appliance pair was compared using superimposition software. A generalized linear model and post-hoc Tukey contrasts (α=0.05) were applied to compare each thickness. RESULTS: Model thickness has a statistically significant effect on dimensional accuracy of thermoformed appliances. Appliances fabricated on 1.0mm and 1.5mm models displayed poor accuracy, with a statistically significantly lower percentage of data points within tolerance (±0.250mm) than appliances fabricated on models printed at 2.0mm thickness and greater. CONCLUSIONS: 3D printed model thickness affects the dimensional accuracy of a thermoformed retainer. To ensure minimal deformation and promote clinical utility of the thermoformed appliance, models should be printed with a minimum shell thickness of 2.0mm for the materials investigated.