Functionalizing non-smectic clay via methoxy-modification for enhanced removal and recovery of oxytetracycline from aqueous media.

Affiliation

Ashiq A(1), Walpita J(2), Vithanage M(3).
Author information:
(1)Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka.
(2)Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka; Instrument Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka.
(3)Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka. Electronic address: [Email]

Abstract

Kaolinite and methoxy-modified kaolinite were used as novel adsorbents for oxytetracycline (OTC) removal and recovery from aqueous media. Batch adsorption experiments were performed to study the effect of pH, ionic strengths, initial concentration, and contact time on OTC adsorption. The adsorbents were characterized using powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after adsorption. Adsorption of OTC reached its maximum when solution pH increased up to 6 for 0.001 M ionic strength, above which adsorption decreased further when solution pH increased. Freundlich and Langmuir's models best fit the equilibrium data with a strong dependency on OTC adsorption capacity giving its maximum at 36 mg g-1. Binding is postulated for OTC adsorption on pristine kaolinite as a special case of Hill model with independent binding interaction of OTC adsorption onto the clay that affects the adjacent sites on the pristine kaolinite, in contrast with the adsorption of OTC on methoxy-modified kaolinite. Nitrogen peaks of the XPS spectra indicated changes in the oxidation states of C-N bonds in the N1s peaks by forming tertiary amide C-N and methoxy O-CH3 bonds which corroborated with the results from FTIR spectra. Removal efficiencies and spectroscopic results indicate that performance on methoxy-modified kaolinite is a promising modification on the clay for recovering antibiotics from wastewater.