Global analysis of protein succinylation modification of Nostoc flagelliforme in response to dehydration.


Li X(1), Wang L(1), Wang M(1), Zhang Z(1), Ma C(1), Ma X(1), Na X(2), Liang W(3).
Author information:
(1)School of Life Sciences, Ningxia University, Yinchuan 750021, PR China.
(2)School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. Electronic address: [Email]
(3)School of Life Sciences, Ningxia University, Yinchuan 750021, PR China. Electronic address: [Email]


Nostoc flagelliforme is a type of terrestrial cyanobacteria that is distributed in arid or semi-arid steppes in China. To research the molecular mechanisms underlying the adaptation of N. flagelliforme to drought stress, the succinylated expression profile and changes in N. flagelliforme that resulted as a response to dehydration were analyzed by label-free proteomics. A total of 1149 succinylated sites, 1128 succinylated peptides, and 396 succinylated proteins were identified. Succinylated proteins were differentially involved in photosynthesis and energy metabolism, as well as in reactive oxygen species (ROS) scavenging. Motif-X analysis of succinylated sites determined a succinylation motif [KxxG]. N. flagelliforme adapts to dehydration by increasing glucose metabolism and pentose phosphate pathway flux, and decreasing photosynthetic rate, which some of the key proteins were succinylated. ROS scavenging was mainly involved in the regulation of the enzyme antioxidant defense system and non-enzymatic antioxidant defense system through succinylation modification, thus eliminating excessive ROS. Protein succinylation of N. flagelliforme may play an important regulatory role in response to dehydration. The results are foundational, as they can inform future research into the mechanisms involved in the succinylation regulation mechanism of N. flagelliforme in response to dehydration. SIGNIFICANCE: The global succinylation network involved in response to dehydration in N. flagelliforme has been established. We found that many succinylated proteins were involved in photosynthesis, glucose metabolism and antioxidation. The global survey of succinylated proteins and the changes of succinylated levels in response to dehydration provided effective information for the drought tolerance mechanism in N. flagelliforme.