Global progress in incorporating climate adaptation into land protection for biodiversity since Aichi targets.


Carrasco L(1)(2), Papeş M(1)(2), Sheldon KS(2), Giam X(2).
Author information:
(1)National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA.
(2)Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.


Climate adaptation strategies are being developed and implemented to protect biodiversity from the impacts of climate change. A well-established strategy involves the identification and addition of new areas for conservation, and most countries agreed in 2010 to expand the global protected area (PA) network to 17% by 2020 (Aichi Biodiversity Target 11). Although great efforts to expand the global PA network have been made, the potential of newly established PAs to conserve biodiversity under future climate change remains unclear at the global scale. Here, we conducted the first global-extent, country-level assessment of the contribution of PA network expansion toward three key land prioritization approaches for biodiversity persistence under climate change: protecting climate refugia, protecting abiotic diversity, and increasing connectivity. These approaches avoid uncertainties of biodiversity predictions under climate change as well as the issue of undescribed species. We found that 51% of the countries created new PAs in locations with lower mean climate velocity (representing better climate refugia) and 58% added PAs in areas with higher mean abiotic diversity compared to the available, non-human-dominated lands not chosen for protection. However, connectivity among PAs declined in 53% of the countries, indicating that many new PAs were located far from existing PAs. Lastly, we identified potential improvements for climate adaptation, showing that 94% of the countries have the opportunity to improve in executing one or more approaches to conserve biodiversity. Most countries (60%) were associated with multiple opportunities, highlighting the need for integrative strategies that target multiple land protection approaches. Our results demonstrate that a global improvement in the protection of climate refugia, abiotic diversity, and connectivity of reserves is needed to complement land protection informed by existing and projected species distributions. Our study also provides a framework for countries to prioritize land protection for climate adaptation using publicly available data.