High yield recombinant expression and purification of oncogenic NSD1, NSD2, and NSD3 with human influenza hemagglutinin tag.


Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea. Electronic address: [Email]


The nuclear receptor-binding SET Domain (NSD) family consists of NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 histone methyltransferases that are crucial for chromatin remodeling. NSDs are implicated in developmental disorders such as Wolf-Hirschhorn and Sotos syndromes as well as various cancers including t(4; 14)(p16; q32) myeloma, an incurable cancer in plasma cells. NSDs have been the target of intensive study to understand their biological functions more fully and inform anti-cancer drug design. Recombinant protein expression and purification of human NSDs using an E. coli expression system are notoriously challenging, but the production of pure, stable, and active NSDs is essential for further studies. To overcome production challenges, we propose a cost-efficient approach optimized to produce a high yield of NSDs using a modified E. coli expression system. We found that tagging the NSDs with a human influenza hemagglutinin (HA) tag greatly improved the quality of the recombinant NSDs, resulting in more than 95% pure, stable, and active NSD-HAs, with an increase in production yield up to 22.4-fold and up to 6.25 mg/L from LB E. coli culture, and without further purification such as ion-exchange or size-exclusion chromatography.


Escherichia coli,HA-tag,NSD1,NSD2,NSD3,Recombinant expression,

OUR Recent Articles