Highly synergistic effects on ammonium removal by the co-system of Pseudomonas stutzeri XL-2 and modified walnut shell biochar.

Affiliation

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, PR China. Electronic address: [Email]

Abstract

Pseudomonas stutzeri strain XL-2 presented efficient ammonium removal due to heterotrophic nitrification-aerobic denitrification. The modified walnut shell biochar also showed ammonium adsorption due to chemical interaction. The complex of modified biochar and strain XL-2 exhibited excellent synergistic effects on ammonium removal, especially in unfavorable environment. The maximum average ammonium removal rate of the complex was 4.40 mg·L-1·h-1, which was 3.01 times higher than that of pure bacteria and 5.57 times higher than that of biochar. A large number of irregular pores and hydrophilic functional groups promoted the immobilization of strain XL-2 on biochar. Adsorption of ammonium, high specific surface area and release of Mg2+ by biochar enhanced biodegradation of strain XL-2. Approximately 96.34%-98.73% of ammonium was removed in a sequencing batch reactor (SBR) inoculating with the complex of strain XL-2 and biochar, which was much higher than the treatment efficiency of free bacteria in SBR.

Keywords

Adsorption,Ammonium removal,Bacteria,Biochar,Heterotrophic nitrification and aerobic denitrification,

OUR Recent Articles