Immediate versus delayed control demands elicit distinct mechanisms for instantiating proactive control.


Department of Psychology, University of New Mexico, Albuquerque, NM, USA. [Email]


Cognitive control is critical for dynamically guiding goal-directed behavior, particularly when applying preparatory, or proactive, control processes. However, it is unknown how proactive control is modulated by timing demands. This study investigated how timing demands may instantiate distinct neural processes and contribute to the use of different types of proactive control. In two experiments, healthy young adults performed the AX-Continuous Performance Task (AX-CPT) or Dot Pattern Expectancy (DPX) task. The delay between informative cue and test probe was manipulated by block to be short (1s) or long (~3s). We hypothesized that short cue-probe delays would rely more on a rapid goal updating process (akin to task-switching), whereas long cue-probe delays would utilize more of an active maintenance process (akin to working memory). Short delay lengths were associated with specific impairments in rare probe accuracy. EEG responses to control-demanding cues revealed delay-specific neural signatures, which replicated across studies. In the short delay condition, EEG activities associated with task-switching were specifically enhanced, including increased early anterior positivity ERP amplitude (accompanying greater mid-frontal theta power) and a larger late differential switch positivity. In the long delay condition, we observed study-specific sustained increases in ERP amplitude following control-demanding cues, which may be suggestive of active maintenance. Collectively, these findings suggest that timing demands may instantiate distinct proactive control processes. These findings suggest a reevaluation of AX-CPT and DPX as pure assessments of working memory and highlight the need to understand how presumably benign task parameters, such as cue-probe delay length, significantly alter cognitive control.


AX-Continuous Performance Task,Cognitive control,EEG, Dot Probe Expectancy,Task-switching,Working memory,

OUR Recent Articles