Improved bioleaching of copper and zinc from brake pad waste by low-temperature thermal pretreatment and its mechanisms.

Affiliation

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China. Electronic address: [Email]

Abstract

A considerable amount of brake pad waste which is composed of phenolic resin and a variety of toxic heavy metals is produced both in China and around the world owing to the flourishing automobile industry. The safe, low cost and eco-sound bioleaching was utilized to extract the valuable metals Cu and Zn from the waste. The results showed that although bioleaching is more efficient in the extraction of Cu and Zn than the chemical counterpart, rather low bioleaching yields of 34% for Cu and 72% for Zn were obtained because of the complicated components and refractory nature of the waste. However, a low-temperature thermal pretreatment at 400 °C notably lifted the bioleaching efficiencies of Cu and Zn to 98% and nearly 100%, respectively. The thermal treatment removed the oil substances, transformed the acid insoluble Cu0 into acid soluble CuO and destroyed the chelation/complexation of the phenolic resin to loose Cu and Zn, promoting bioleaching performance of Cu and Zn. The combined processes of low-temperature thermal pretreatment and bioleaching is totally qualified for the extraction of Cu and Zn from the refractory waste.

Keywords

Bioleaching,Brake pad waste,Recovery of Cu and Zn,Thermal treatment,