Inhibition of TLR9 attenuates skeletal muscle fibrosis in aged sarcopenic mice via the p53/SIRT1 pathway.

Affiliation

The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, YuZhong District, Chongqing 400016, China. Electronic address: [Email]

Abstract

Sarcopenia is an age-related syndrome characterized by a gradual loss of muscle mass and function, but its pathophysiological mechanism remains unclear. Skeletal muscle extracellular matrix (ECM) remodeling is an important pathological change in sarcopenia, and fibrosis is the most obvious manifestation of this change. We found that the expression of the immunoreceptor Toll-like receptor 9 (TLR9) is significantly increased in skeletal muscle in aged mice and is positively related to muscle fibrosis. Moreover, in previous reports, the longevity gene Sirt1 was reported to attenuate ECM deposition and improve muscle function. In this study, we hypothesized that TLR9 modulated skeletal muscle fibrosis via Sirt1. We used TLR9 knockout (TLR9 KO) mice and C57 mice, and grip strength and body composition were compared at different ages. We found that TLR9 knockout significantly attenuated skeletal muscle fibrosis and improved muscle function in aged mice. Furthermore, silent information regulator 1 (Sirt1) activity in mice was inhibited by Ex527, which is a specific inhibitor of Sirt1. Negative Sirt1 regulation via the activation of TLR9-related signaling pathways participated in skeletal muscle fibrosis in the sarcopenic mice, and this process might mediated by the Sirt1/Smad signaling pathway. Our findings revealed that fibrosis changes in the gastrocnemius muscle in sarcopenic mice are closely related to TLR9 activation, and TLR9 modulation could be a therapeutic strategy for combating sarcopenia during aging.

Keywords

Fibrosis,Sarcopenia,Skeletal muscle,TLR9,

OUR Recent Articles