Klonopin assay using modified electrode with multiwalled carbon nanotubes and poly melamine nanocomposite.


Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran. Electronic address: [Email]


Developing of cheap, sensitive and stable sensors plays a significant role in pharmaceutical and clinical applications. Considering the effective role of Klonopin (KNP) in the treatment of epilepsy, KNP quantification in its production process for dose adjustments and checking the purity and also after its usage by patents for bioavailability testing and effectiveness assay is vital. In present work, an efficient electrochemical sensor based on poly melamine and multiwalled carbon nanotubes nanocomposite (PMela/CNTs) was constructed which displayed effective electrochemical response toward KNP. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square-wave voltammetry (SWV) experiments were applied for performance evaluation of the PMela/CNTs modified electrode and electrochemical redox behavior of KNP. Distinguish synergetic effect was observed between CNTs and poly melamine in response to KNP electrochemical redox reaction. A linear detection range of 0.05 to 10 μM with the detection limits of 63 nM was achieved for KNP analysis. The practical application of the PMela/CNTs modified electrode revealed satisfactory results for quantification of KNP in biological fluids.


Carbon nanotube,Determination,Glassy carbon electrode,Klonopin,Melamine,Voltammetric,

OUR Recent Articles