Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.

Affiliation

Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland. Electronic address: [Email]

Abstract

WE43, a magnesium alloy containing yttrium and neodymium as main alloying elements, has become a well-established bioresorbable implant material. Implants made of WE43 are often fabricated by powder extrusion and subsequent machining, but for more complex geometries laser powder bed fusion (LPBF) appears to be a promising alternative. However, the extremely high cooling rates and subsequent heat treatment after solidification of the melt pool involved in this process induce a drastic change in microstructure, which governs mechanical properties and degradation behaviour in a way that is still unclear. In this study we investigated the changes in the microstructure of WE43 induced by LPBF in comparison to that of cast WE43. We did this mainly by electron microscopy imaging, and chemical mapping based on energy-dispersive X-ray spectroscopy in conjunction with electron diffraction for the identification of the various phases. We identified different types of microstructure: an equiaxed grain zone in the center of the laser-induced melt pool, and a lamellar zone and a partially melted zone at its border. The lamellar zone presents dendritic lamellae lying on the Mg basal plane and separated by aligned Nd-rich nanometric intermetallic phases. They appear as globular particles made of Mg3Nd and as platelets made of Mg41Nd5 occurring on Mg prismatic planes. Yttrium is found in solid solution and in oxide particles stemming from the powder particles' shell. Due to the heat influence on the lamellar zone during subsequent laser passes, a strong texture developed in the bulk material after substantial grain growth. STATEMENT OF SIGNIFICANCE: Additively manufactured magnesium alloys have the potential of providing a major breakthrough in bone-reconstruction surgery by serving as biodegradable porous scaffold material. This study is the first to report in detail on the microstructure development of the established magnesium alloy WE43 fabricated by the additive manufacturing process of Laser Powder Bed Fusion (LPBF). It presents unique microstructural features which originate from the laser-melting process. An in situ transmission electron microscopy heating experiment further demonstrates the development of two distinct intermetallic phases in additively manufactured WE43 alloys. While one forms already during solidification, the other precipitates due to the ongoing heat treatment during LPBF processing.

Keywords

Biodegradable implants,Bone scaffolds,Electron microscopy,Laser powder bed fusion,Magnesium,Microstructure,Rapid solidification,WE43,

OUR Recent Articles