Left ventricular diastolic dysfunction and exercise intolerance in obese heart failure with preserved ejection fraction.

Affiliation

Samuel TJ(1), Kitzman DW(2)(3), Haykowsky MJ(4), Upadhya B(2), Brubaker P(5), Nelson MB(2), Hundley WG(6), Nelson MD(1)(7).
Author information:
(1)Department of Kinesiology, University of Texas at Arlington, Arlington, Texas.
(2)Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina.
(3)Section on Gerontology, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina.
(4)Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada.
(5)Department of Health and Exercise Science, Wake Forest University, North Carolina.
(6)Internal Medicine, Virginia Commonwealth University, Richmond, Virginia.
(7)Department of Bioengineering, University of Texas at Arlington, Arlington, Texas.

Abstract

This study tested the hypothesis that early left ventricular (LV) relaxation is impaired in older obese patients with heart failure with preserved ejection fraction (HFpEF), and related to decreased peak exercise oxygen uptake (peak V̇o2). LV strain and strain rate were measured by feature tracking of magnetic resonance cine images in 79 older obese patients with HFpEF (mean age: 66 yr; mean body mass index: 38 kg/m2) and 54 healthy control participants. LV diastolic strain rates were indexed to cardiac preload as estimated by echocardiography derived diastolic filling pressures (E/e'), and correlated to peak V̇o2. LV circumferential early diastolic strain rate was impaired in HFpEF compared with controls (0.93 ± 0.05/s vs. 1.20 ± 0.07/s, P = 0.014); however, we observed no group differences in early LV radial or longitudinal diastolic strain rates. Isolating myocardial relaxation by indexing all three early LV diastolic strain rates (i.e. circumferential, radial, and longitudinal) to E/e' amplified the group difference in early LV diastolic circumferential strain rate (0.08 ± 0.03 vs. 0.13 ± 0.05, P < 0.0001), and unmasked differences in early radial and longitudinal diastolic strain rate. Moreover, when indexing to E/e', early LV diastolic strain rates from all three principal strains, were modestly related with peak V̇o2 (R = 0.36, -0.27, and 0.35, respectively, all P < 0.01); this response, however, was almost entirely driven by E/e' itself, (R = -0.52, P < 0.001). Taken together, we found that although LV relaxation is impaired in older obese patients with HFpEF, and modestly correlates with their severely reduced peak exercise V̇o2, LV filling pressures appear to play a much more important role in determining exercise intolerance.NEW & NOTEWORTHY Using a multimodal imaging approach to uncouple tissue deformation from atrial pressure, we found that left ventricular (LV) relaxation is impaired in older obese patients with HFpEF, but only modestly correlates with their severely reduced peak V̇o2. In contrast, the data show a much stronger relationship between elevated LV filling pressures and exercise intolerance, refocusing future therapeutic priorities.