Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress.


Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University/College of Plant protection, Gansu Agricultural University/ Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China. [Email]


BACKGROUND : Trichoderma species, a class of plant beneficial fungi, may provide opportunistic symbionts to induce plant tolerance to abiotic stresses. Here, we determined the possible mechanisms responsible for the indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate-deaminase (ACC-deaminase) producing strain of Trichoderma longibrachiatum T6 (TL-6) in promoting wheat (Triticum aestivum L.) growth and enhancing plant tolerance to NaCl stress.
RESULTS : Wheat treated with or without TL-6 was grown under different levels of salt stress in controlled environmental conditions. TL-6 showed a high level of tolerance to 10 mg ml- 1 of NaCl stress and the inhibitory effect was more pronounced at higher NaCl concentrations. Under NaCl stress, the activity of ACC-deaminase and IAA concentration in TL-6 were promoted, with the activity of ACC-deaminase increased by 26% at the salt concentration of 10 mg ml- 1 and 31% at 20 mg ml- 1, compared with non-saline stress; and the concentration of IAA was increased by 10 and 7%, respectively (P < 0.05). The increased ACC-deaminase and IAA concentration in the TL-6 strain may serve as an important signal to alleviate the negative effect of NaCl stress on wheat growth. As such, wheat seedlings with the ACC-deaminase and IAA producing strain of TL-6 treatment under NaCl stress increased the IAA concentration by an average of 11%, decreased the activity of ACC oxidase (ACO) by an average of 12% and ACC synthase (ACS) 13%, and decreased the level of ethylene synthesis and the content of ACC by 12 and 22%, respectively (P < 0.05). The TL-6 treatment decreased the transcriptional level of ethylene synthesis genes expression, and increased the IAA production genes expression significantly in wheat seedlings roots; down-regulated the expression of ACO genes by an average of 9% and ACS genes 12%, whereas up-regulated the expression of IAA genes by 10% (P < 0.05). TL-6 treatments under NaCl stress decreased the level of Na+ accumulation; and increased the uptake of K+ and the ratio of K+/Na+, and the transcriptional level of Na+/H+ antiporter gene expression in both shoots and roots.
CONCLUSIONS : Our results indicate that the strain of TL-6 effectively promoted wheat growth and enhanced plant tolerance to NaCl stress through the increased ACC-deaminase activity and IAA production in TL-6 stain that modulate the IAA and ethylene synthesis, and regulate the transcriptional levels of IAA and ethylene synthesis genes expression in wheat seedling roots under salt stress, and minimize ionic toxicity by disturbing the intracellular ionic homeostasis in the plant cells. These biochemical, physiological and molecular responses helped promote the wheat seedling growth and enhanced plant tolerance to salt stress.


1-aminocyclopropane-1-carboxylate-deaminase,Gene expression,Indole acetic acid,Ionic toxicity,Plant growth promotion,Salt stress,Trichoderma species,Wheat seedling,