Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration.

Affiliation

Raja N(1), Park H(1), Choi YJ(1), Yun HS(1)(2).
Author information:
(1)Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science
(KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea.
(2)Korea University of Science and Technology
(UST), 217 Gajeong-ro, Yeseong-gu, Daejeon 305-350, Republic of Korea.

Abstract

In this work, we fabricated unique coiled-structured bioceramics contained in hydrogel beads for simultaneous drug and cell delivery using a combination of bone cement chemistry and bioprinting and characterized them. The core of the calcium-deficient hydroxyl apatite (CDHA) contains quercetin, which is a representative phytoestrogen isolated from onions and apples, to control the metabolism of bone tissue regeneration through sustained release over a long period of time. The shell consists of an alginate hydrogel that includes preosteoblast MC3T3-E1 cells. Ceramic paste and hydrogel were simultaneously extruded to fabricate core-shell beads through the inner and outer nozzles, respectively, of a concentric nozzle system based on a material-extruding-based three-dimensional (3D) printing system. The formation of beads and the coiled ceramic core is related to both alginate concentration and printing conditions. The size of the microbeads and the thickness of the coiled structure could be controlled by adjusting the nozzle conditions. The whole process was carried out at physiological conditions (37 °C) to be gentle on the cells. The alginate shell undergoes solidification by cross-linking in CaCl2 or monocalcium phosphate monohydrate (MCPM) solution, while the hardening and cementation of the α-tricalcium phosphate (α-TCP) core to CDHA are subsequently initiated by immersion in phosphate-buffered saline solution. This process replaces the typical sintering of ceramic processing to prevent damage to the hydrogel, cells, and drugs in the beads. The cell-loaded beads were then cultured in cell culture media where the cells could maintain good viability during the entire testing period, which was over 50 days. Cell growth and elongation were observed even in the alginate along the CDHA coiled structure over time. Sustained release of quercetin without any initial burst was also confirmed during a test period of 120 days. These novel structured microbeads with multibiofunctionality can be used as new bone substitutes for hard tissue regeneration in indeterminate defect sites.