New SIRT2 inhibitors: Histidine-based bleomycin spin-off.

Affiliation

Research Institute for Drug Discovery, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan. Electronic address: [Email]

Abstract

Bleomycin is considered to exert its antitumor activity via DNA cleavage mediated by activated oxygen generated from the iron complex in its chelator moiety. Spin-offs from this moiety, HPH-1Trt and HPH-2Trt, with anti-cancer activities were recently synthesized. In this paper, we developed inhibitors of nicotinamide adenine dinucleotide-dependent deacetylase isoform 2 of Sirtuin protein (SIRT2), based on HPH-1Trt/HPH-2Trt, and aimed to generate new anti-cancer drugs. HPH-1Trt and HPH-2Trt had in vitro anti-SIRT2 inhibitory activity with 50% inhibitory concentration (IC50) values of 5.5 and 8.8 μM, respectively. A structural portion of HPH-1Trt/HPH-2Trt, a tritylhistidine derivative TH-1, had stronger activity (IC50 = 1.7 μM), and thus, fourteen derivatives of TH-1 were synthesized. Among them, TH-3 had the strongest activity (IC50 = 1.3 μM). Selective binding of TH-3 in the pocket of SIRT2 protein was confirmed with a molecular docking study. Furthermore, TH-3 strongly lowered viability of the breast cancer cell line MCF7 with an IC50 of 0.71 μM. A structure-activity relationship study using cell lines suggested that the mechanism of TH-3 to suppress MCF7 cells involves not only SIRT2 inhibition, but also another function. This compound may be a new candidate anti-cancer drug.