Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from decachlorobiphenyl (PCB-209) on solids/air interface.


State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China. Electronic address: [Email]


In this work, the photochemical transformation of decachlorobiphenyl (PCB-209) on the surface of several solid particles were systematically evaluated under simulated solar irradiation. The degradation kinetics of PCB-209 were first investigated using silica as a model aerosol particulate. It was found that PCB-209 photodegradation was enhanced at small silica particle size, low surface coverage and low humidity. Electron paramagnetic resonance (EPR) analysis and radicals quenching experiments demonstrated that hydroxyl radicals contributed to PCB-209 degradation. Stepwise hydrodechlorination, hydroxyl addition and cleavage of the CC bridge bond were mainly observed in the reaction process, leading to the formation of lower chlorinated PCBs, hydroxylated PCBs (OH-PCBs) and chlorophenols. Based on density functional theory (DFT) calculation, the dissociation energy of the CCl bond requires 354.81-359.79 kJ/mol energy that corresponds to a wavelength of less than 322 nm. And the minimum activation energy of OH radicals attack on PCB-209 is only 18.12 kJ/mol. Photochemical transformation of PCB-209 can also occur on the surface of natural particles, but the rates were inhibited as compared to silica. The hydroxylation and hydrodechlorination products of PCB-209 were detected in all natural particles. This study would make significant contribution to understanding the fate of PCBs in solids/air interface.


Decachlorobiphenyl,Hydroxyl radicals,Photodegradation,Reaction mechanism,Theoretical calculation,

OUR Recent Articles