Profiling the interaction of Al(III)-GFLX complex, a potential pollution risk, with bovine serum albumin.


Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China. Electronic address: [Email]


Fluoroquinolone antibiotics (FQs), a new class of pollutants that seriously threaten human health through environmental and food residues, have aroused wide public concern. However, little attention has been paid to the potential toxicity of FQs' metal complex. Here, we firstly explore the proof-of-concept study of FQs' metal complex to bind bovine serum albumin (BSA) using systematical spectroscopic approaches. In detail, we have found that the complex of Al3+ with gatifloxacin (Al(III)-GFLX complex) can effectively bind to BSA via electrostatic interaction in PBS buffer (pH = 7.4, 1×), resulting in the formation of Al(III)-GFLX-BSA complex. The negative value of ΔG shows that the binding of Al(III)-GFLX complex to BSA is a spontaneous process. Circular dichroism spectra verify that Al(III)-GFLX complex effectively triggers the conformation changes of BSA's secondary structure. It has been proved that the interaction of small molecule with serum albumin has a significant effect on their in vivo biological effects such as absorption, distribution, metabolism, and excretion, and etc. Therefore, the results of this paper may offer a valuable theoretical basis for establishing safety standards of FQs' metal complex to ensure food and environmental health.


Bovine serum albumin,Gatifloxacin,Metal complex,Spectroscopic approaches,Toxicity,

OUR Recent Articles