Propagating density spikes in light-powered motility-ratchets.


Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany. [Email]


Combining experiments and computer simulations, we use a spatially periodic and flashing light-field to direct the motion of phototactic active colloids. Here, the colloids self-organize into a density spike pattern, which resembles a shock wave and propagates over long distances, almost without dispersing. The underlying mechanism involves a synchronization of the colloids with the light-field, so that particles see the same intensity gradient each time the light-pattern is switched on, but no gradient in between (for example). This creates pulsating transport whose strength and direction can be controlled via the flashing protocol and the self-propulsion speed of the colloids. Our results might be useful for drug delivery applications and can be used to segregate active colloids by their speed.

OUR Recent Articles