Reactivation of organophosphate-inhibited serum butyrylcholinesterase by novel substituted phenoxyalkyl pyridinium oximes and traditional oximes.

Affiliation

Nichols RH(1), Chambers JE(2).
Author information:
(1)Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, United States.
(2)Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, United States. Electronic address: [Email]

Abstract

Organophosphorus compounds (OPs) include nerve agents and insecticides that potently inhibit acetylcholinesterase (AChE), an essential enzyme found throughout the nervous system. High exposure levels to OPs lead to seizures, cardiac arrest, and death if left untreated. Oximes are a critical piece to the therapeutic regimen which remove the OP from the inhibited AChE and restore normal cholinergic function. The current oximes 2-PAM, MMB-4, TMB-4, HI-6, and obidoxime (OBD) have two drawbacks: lack of broad spectrum protection against multiple OP structures and poor brain penetration to protect against OP central neurotoxicity. An alternative strategy to enhance therapy is reactivation of serum butyrylcholinesterase (BChE). BChE is stoichiometrically inhibited by OPs with no apparent toxic result. Inhibition of BChE in the serum followed by reactivation could create a pseudo-catalytic scavenger allowing numerous regenerations of BChE to detoxify circulating OP molecules before they can reach target AChE. BChE in serum from rats, guinea pigs or humans was screened for the reactivation potential of our novel substituted phenoxyalkyl pyridinium oximes, plus 2-PAM, MMB-4, TMB-4, HI-6, and OBD (100μM) in vitro after inhibition by highly relevant surrogates of sarin, VX, and cyclosarin, and also DFP, and the insecticidal active metabolites paraoxon, phorate-oxon, and phorate-oxon sulfoxide. Novel oxime 15 demonstrated significant broad spectrum reactivation of OP-inhibited rat serum BChE while novel oxime 20 demonstrated significant broad spectrum reactivation of OP-inhibited human serum BChE. All tested oximes were poor reactivators of OP-inhibited guinea pig serum BChE. The bis-pyridinium oximes were poor BChE reactivators overall. BChE reactivation may be an additional mechanism to attenuate OP toxicity and contribute to therapeutic efficacy.