Real-time and noninvasive detection of UV-Induced deep tissue damage using electrical tattoos.


Departments of Chemistry and Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States. Electronic address: [Email]


Understanding longterm deep tissue damage caused by UV radiation is imperative for ensuring the health and safety of living organisms that are regularly exposed to radiation sources. While existing UV dosimeters can quantify the cumulative amount of radiation to which an organism is exposed, these sensors cannot reveal the presence and extent of internal tissue damage caused by such exposure. Here we describe a method that uses conducting polymer tattoos to detect UV radiation-induced deep tissue damage in living organisms using bioimpedance analysis (BIA), which allows for noninvasive, real-time measurements of body composition and point-of-care assessment of clinical condition. To establish a performance baseline for this method, we quantify the effects of UVA radiation on live plant leaves. Low-energy UVA waves penetrate further into biological tissue, as compared to UVB, UVC and ionizing radiation, and cause longlasting deep tissue damage that cannot be immediately and readily detected using surface-sensitive techniques, such as photogrammetry and epidermal sensors. We show that single-frequency bioimpedance analysis allows for sensitive, real-time monitoring of UVA damage: as UVA dose increases, the bioimpedance of a plant leaf measured at a frequency of 1 kHz linearly decreases until the extent of radiation damage saturates and the specimen is effectively necrotized. We establish a strong correlation between radiation fluence, internal biological damage and the bioimpedance signal measured using our conducting polymer tattoos, which supports the efficacy of our method as a new type of internal biodosimetry.


Bioimpedance analysis,Conducting polymer,Plant electronics,Point of care sensing,Radiation damage,Reactive vapor deposition,

OUR Recent Articles