Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles.

Affiliation

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States. Electronic address: [Email]

Abstract

Suramin (SM), a drug for African sleeping sickness and river blindness therapy, has been investigated in various clinical trials for cancer therapy. However, SM was eventually withdrawn from the market because of its narrow therapeutic window and the side effects associated with multiple targets. In this work, we developed a simple but effective system based on a nontoxic dose of SM combined with a chemotherapeutic agent for the treatment of metastatic triple-negative breast cancer (TNBC). SM and glycol chitosan (GCS) formed nanogels because of the electrostatic effect, whereas doxorubicin (DOX) was incorporated into the system through the hydrophilic and hydrophobic interactions between DOX and GCS as well as the ionic interactions between DOX and SM to yield GCS-SM/DOX nanoparticles (NPs). GCS-SM/DOX NPs have a size of approximately 186 nm and a spherical morphology. In vitro experiments showed that GCS-SM NPs could effectively inhibit cancer cell migration and invasion, as well as angiogenesis. Furthermore, in a TNBC lung metastasis animal model, GCS-SM/DOX NPs significantly reduced tumor burden and extended the lifespan of animals, while not inducing cardio and renal toxicities associated with the DOX and SM, respectively. As all the components used in this system are biocompatible and easy for large-scale fabrication, the GCS-SM/DOX system is highly translatable for the metastatic breast cancer treatment. STATEMENT OF SIGNIFICANCE: The doxorubicin-loaded glycol chitosan-suramin nanoparticle (GCS-SM/DOX) is novel in the following aspects: SM acts as not only a gelator for the first time in the preparation of the nanoparticle but also an active pharmaceutical agent in the dosage form. GCS-SM/DOX NP significantly reduced tumor burden and extended the lifespan of animals with triple-negative breast cancer lung metastasis. GCS-SM/DOX NPs attenuate cardio and renal toxicities associated with the DOX and SM. The GCS-SM/DOX system is highly translatable because of its simple, one-pot, and easy-to-scale-up preparation protocol.

Keywords

Antiangiogenesis,Antimetastasis,Doxorubicin,Nanoparticle,Suramin,Triple-negative breast cancer,