Short communication: Genotype-phenotype association analysis revealed different utilization ability of 2'-fucosyllactose in Bifidobacterium genus.

Affiliation

He Z(1), Yang B(2), Liu X(1), Ross RP(3), Stanton C(4), Zhao J(1), Zhang H(5), Chen W(6).
Author information:
(1)State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
(2)State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address: [Email]
(3)International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China; APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
(4)International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China; Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland.
(5)State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China.
(6)State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University
(BTBU), Beijing 100048, China.

Abstract

The oligosaccharide 2'-fucosyllactose (2'FL) in human breast milk selectively promotes the proliferation of bifidobacteria. One hundred fifty-one Bifidobacterium strains were evaluated for their capacity to utilize 2'FL based on the combination of phenotype and genotype association analysis. Through genotype analysis, 37 strains were predicted to have the ability to use 2'FL, including Bifidobacteriumbifidum, Bifidobacteriumbreve, Bifidobacteriumlongum ssp. longum, Bifidobacteriumlongum ssp. infantis, and Bifidobacteriumdentium, whereas Bifidobacteriumadolescentis, Bifidobacteriumanimalis, Bifidobacteriumpseudocatenulatum, and Bifidobacteriumangulatum could not use 2'FL. For in vitro utilization, there were noteworthy differences for 2'FL usage among different species, which were 100% consistent with genotype prediction. The results indicated that 2'FL utilization ability differed even within the same species, and Bifidobacterium followed the currently well-known pathway to utilize 2'FL, which could provide guidance to develop personalized prebiotics for different bifidobacteria via gene-trait matching analysis.