Sulfur and phosphorus co-doped graphene quantum dots for fluorescent monitoring of nitrite in pickles.


College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, China. Electronic address: [Email]


Doping graphene quantum dots (GQDs) with heteroatoms can change their band gap and electronic density, thus enhancing their fluorescence quantum yield (QY). In this work, we for the first time reported a nontoxic, rapid, and one-pot hydrothermal method to synthesize sulfur and phosphorus co-doped GQDs (S, P-GQDs). Citric acid was functioned as a carbon source, whereas sodium phytate and anhydrous sodium sulfate are used as the P and S sources, respectively, in this bottom-up synthesis. The resulting S, P-GQDs exhibit high heteroatomic doping ratios of 9.66 at.% for S and 3.34 at.% for P, and higher QY than those obtained from monoatomic doped GQDs. Additionally, the as-prepared S, P-GQDs exhibit excitation-dependent behavior, pH sensitivity between 8.0 and 13.0, high tolerance of ionic strength. More importantly, the as-synthesized S, P-GQDs show a sensitive and selective behavior for sensing nitrite (NO2-) in the concentration range of 0.7-9 μmol/L, and the detection limit was as low as 0.3 μmol/L. Additionally, the S, P-GQDs was successfully used in detecting NO2- in pickled foods, showing their promise for potential applications in realistic analysis.


Doped graphene quantum dots,Fluorescent probes,Nitrite,Phosphorus,Sulfur,