Supplementing multi-functional groups to polysulfone membranes using Azadirachta indica leaves powder for effective and highly selective acid recovery.

Affiliation

Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Technology, Faculty of Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand. Electronic address: [Email]

Abstract

Moderate and eco-pleasing ion-exchange trade membranes are in need to recover acid from industrial waste. Present study is focused on incorporation of plant waste (Azadirachta indica, neem leaves powder (NP)) of different composition as filler to polysulfone (PSf) membrane matrix to achieve acid recovery. Membranes were characterized, their chemical, mechanical and thermal stabilities and effectiveness in acid recovery via diffusion has been inspected. Multi-functional groups (-COOH, -NH2, -OH, -OAc, -C = O) present in different components of NP contributes in their own means in H+ ion transportation through membrane in acid recovery. They assisted formation of hydrogen bond and provided channels for ion permeation, and facilitated selective transportation of H+ ion over Fe2+ ions and explained mechanism is in accordance with Grotthuss-type and vehicle mechanism. Membrane with 15% of NP showed better performance in terms of ion exchange capacity (IEC) and acid recovery, at optimum concentration of NP, composite the membrane showed highest IEC values of 3.9771 mmol/g, UH+ value of ≈46.499 × 10-3 m/h and greater separation factor ≈154, which is higher than commercially available DF-120 membrane. An original thought of utilizing NP in membrane matrix opens up promising opportunities for extremely straightforward, easy, cost-effective and greener methods of recovery acid.

Keywords

Acid recovery,Composite membranes,Ion transportation,Plant waste,

OUR Recent Articles