Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance.


Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,Lanzhou 730000, People's Republic of China. Electronic address: [Email]


Superamphiphobicity is a wetting phenomenon that not only water but also oils or organic solvents with low surface tension exhibit large contact angles above 150° along with low contact angle hysteresis on solid surface. It is well known that both chemical constituent and surface roughness have impacts on the wettability of solid surface. Herein, several fundamental wetting states and design criteria for re-entrant structures are introduced first. Then, various chemical modification materials endowing solid substrates low surface energy are summarized subsequently. Furthermore, roughening processes conferring hierarchical or re-entrant topographic structures on surfaces are classified based on different types of topographies abstracted from the natural oil-repellent creatures (mushroom-like structures) as well as bio-inspired superamphiphobic surfaces (i.e., randomly distributed nanostructures, regularly patterned microstructures and other complex hierarchical structures). Significantly, the impalement pressure and formulated rules of various re-entrant profiles are recommended in detail. At the same time, fabrication, outstanding performances such as mechanical durability, chemical stability are also mentioned according to different types of morphologies. Beyond that, current fabrication obstacles and future prospects are proposed simultaneously in the end.


Design criteria,Reentrant structures,Superamphiphobicity,Wettability,