Tanshinone prevents alveolar bone loss in ovariectomized osteoporosis rats by up-regulating phosphoglycerate dehydrogenase.

Affiliation

Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, China. Electronic address: [Email]

Abstract

Osteoporosis is manifested by reduced bone mass. Tanshinone has been shown to affect osteoclast differentiation, but its role in osteoporosis remains less clear. This study aimed to investigate the effects and molecular mechanisms of tanshinone on osteoporosis. Osteoporosis was induced by bilateral ovariectomy (OVX) in adult female rats treated with or without tanshinone. Trabecular bone structure was assessed by micro-computed tomography (micro-CT). Bone marrow stromal cells (BMSCs) were isolated for analysis of stemness and senescence. mRNA levels of age related genes were examined and the role of the gene that was upregulated by tanshinone treatment was suppressed to determine its involvement in tanshinone mediated effects. Finally, the mechanism underlying tanshinone induced gene upregulation was explored. We found that tanshinone treatment restored alveolar bone structure in OVX rats as well as the stemness and senescence status of BMSCs isolated from OVX rats. Tanshinone upregulated Phgdh mRNA levels and inhibition of phosphoglycerate dehydrogenase Phgdh, the protein encoded by the Phgdh gene, abolished the effects of tanshinone on BMSC stemness and senescence. Finally, we found that OVX lead to hypermethylation of the promoter region of Phgdh which was suppressed by tanshinone treatment. Our study shows that tanshinone potently suppress OVX induced osteoporosis and BMSC senescence through upregulation of PHGDH.

Keywords

Aging,Alveolar bone loss,Osteoporosis,Phosphoglycerate dehydrogenase (PHGDH),Tanshinone,

OUR Recent Articles