The bioavailability and contribution of the newly deposited heavy metals (copper and lead) from atmosphere to rice (Oryza sativa L.).


Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangxi Engineering Research Center of Eco-Remediation of Heavy Metal Pollution, Jiangxi Academy of Science, Nanchang, 330096, China. Electronic address: [Email]


Despite the global importance of atmospheric heavy metal input into agricultural soils, research has primarily focused on the amount of the depositions with limited attention given to the risk of the newly deposited heavy metals. To understand the remobilization of the newly deposited copper (Cu) and lead (Pb) from the atmosphere and explore the metals' mobility and bioavailability to rice (Oryza sativa L.), a soil transplant experiment was conducted in three areas along a gradient of atmospheric depositions. Approximately 61% of the Cu and 76% of the Pb depositions tended to be present in potentially mobile fractions. The soil retention of newly deposited Cu and Pb presented as higher mobile fractions than these in the original soil. The newly deposited Cu and Pb in soils only accounted for 0.34-8.7% and 0.07-0.29% of the total soil Cu and Pb pools, but they contributed 30-84% and 6-41% in rice tissues, respectively. A major implication of these findings is that once the heavy metal is deposited, it may be reactivated in soils and transported to aerial parts or foliar uptake into plant tissues, emphasizing the important role of the newly deposited Cu and Pb in contributing to the edible parts of crops.


Atmospheric deposition,Copper and lead fractions,Rice tissues,Soil transplant experiment,

OUR Recent Articles