The use of different sublethal endpoints to monitor atrazine toxicity in nematode Caenorhabditis elegans.

Affiliation

Zhou R(1), Liu R(2), Li W(2), Wang Y(1), Wan X(1), Song N(1), Yu Y(1), Xu J(3), Bu Y(4), Zhang A(5).
Author information:
(1)Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China.
(2)Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
(3)Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
(4)Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address: [Email]
(5)Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China. Electronic address: [Email]

Abstract

In this work, Caenorhabditis elegans was employed as an in vivo model to determine the toxic effects of atrazine at different concentrations. After the exposure period from the larval stage L1 to adulthood day 1, atrazine (10 mg/L) significantly decreased the body length and lifespan of nematodes. In addition, exposure to ≥0.01 mg/L atrazine remarkably increased the intestinal reactive oxygen species (ROS) levels and reduced locomotion behavior of nematodes, while exposure to ≥ 1 mg/L atrazine decreased the brood size of nematodes. Moreover, atrazine (0.001-0.1 mg/L) upregulated the expression levels of hsp-6::GFP and hsp-6/60 in nematodes, indicating the activation of mitochondrial unfolded protein response (mtUPR). On the contrary, atrazine (1-10 mg/L) downregulated the expression levels of hsp-6::GFP and hsp-6/60 in nematodes. Furthermore, mtUPR induction governed by the RNAi knockdown of atfs-1 could increase the vulnerability of nematodes against atrazine toxicity. Overall, our findings highlighted the dynamic responses of nematodes toward different concentrations of atrazine, which could be monitored using different sublethal endpoints as bioindicators.