Three-dimensional evaluations of preoperative planning reproducibility for the osteosynthesis of distal radius fractures.

Affiliation

Yoshii Y(1), Ogawa T(2), Shigi A(3), Oka K(3), Murase T(3), Ishii T(4).
Author information:
(1)Department of Orthopaedic Surgery, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki, 300-0395, Japan. [Email]
(2)Department of Orthopaedic Surgery, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan.
(3)Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
(4)Department of Orthopaedic Surgery, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki, 300-0395, Japan.

Abstract

BACKGROUND: Three-dimensional preoperative planning was applied for the osteosynthesis of distal radius fractures. The objective of this study was to evaluate the reproducibility of three-dimensional preoperative planning for the osteosynthesis of distal radius fractures with three-dimensional reference points. METHODS: Sixty-three wrists of 63 distal radius fracture patients who underwent osteosynthesis with three-dimensional preoperative planning were evaluated. After taking preoperative CT scans of the injured wrists, 3D images of the distal radius were created. Fracture reduction, implants choices, and placements simulation were performed based on the 3D images. One month after the surgery, postoperative CT images were taken. The reproducibility was evaluated with preoperative plan and postoperative 3D images. The images were compared with the three-dimensional coordinates of radial styloid process, volar and dorsal edges of sigmoid notch, and the barycentric coordinates of the three reference points. The reproducibility of the preoperative plan was evaluated by the distance of the coordinates between the plan and postoperative images for the reference points. The reproducibility of radial inclination and volar tilt on three-dimensional images were evaluated by intra-class correlation coefficient (ICC). RESULTS: The distances between the preoperative plan and the postoperative reduction for each reference point were (1) 2.1±1.3 mm, (2) 1.9±1.2 mm, and (3) 1.9±1.2 mm, respectively. The distance between the preoperative plan and postoperative reduction for the barycentric coordinate was 1.3±0.8 mm. ICCs were 0.54 and 0.54 for the volar tilt and radial inclination, respectively (P<0.01). CONCLUSIONS: Three-dimensional preoperative planning for the osteosynthesis of distal radius fracture was reproducible with an error of about 2 mm for each reference point and the correlations of reduction shapes were moderate. The analysis method and reference points may be helpful to understand the accuracy of reductions for the three-dimensional preoperative planning in the osteosynthesis of distal radius fractures. TRIAL REGISTRATION: Registered as NCT02909647 at ClinicalTrials.gov.