Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer.

Affiliation

Jang J(1), Kim J(2), Lee HJ(3), Chang JH(2).
Author information:
(1)Department of Electronic Engineering, Sogang University, Seoul 04107, Korea.
(2)Department of Information and Communnication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
(3)Department of Radiology, Seoul National University of Bundang Hospital, Seongnam-si 13620, Korea.

Abstract

A combined transrectal ultrasound and photoacoustic (TRUS-PA) imaging probe was developed for the clear visualization of morphological changes and microvasculature distribution in the prostate, as this is required for accurate diagnosis and biopsy. The probe consisted of a miniaturized 128-element 7 MHz convex array transducer with 134.5° field-of-view (FOV), a bifurcated optical fiber bundle, and two optical lenses. The design goal was to make the size of the TRUS-PA probe similar to that of general TRUS probes (i.e., about 20 mm), for the convenience of the patients. New flexible printed circuit board (FPCB), acoustic structure, and optical lens were developed to meet the requirement of the probe size, as well as to realize a high-performance TRUS-PA probe. In visual assessment, the PA signals obtained with the optical lens were 2.98 times higher than those without the lens. Moreover, the in vivo experiment with the xenograft BALB/c (Albino, Immunodeficient Inbred Strain) mouse model showed that TRUS-PA probe was able to acquire the entire PA image of the mouse tight behind the porcine intestine about 25 mm depth. From the ex vivo and in vivo experimental results, it can be concluded that the developed TRUS-PA probe is capable of improving PA image quality, even though the TRUS-PA probe has a cross-section size and an FOV comparable to those of general TRUS probes.