Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy.

Affiliation

College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, PR China. Electronic address: [Email]

Abstract

Carrier-free nanodrug via small-molecule assembly is a promising alternative strategy for tumor therapy. Thus, developing a self-recognizing carrier-free nanodrug without introduction of foreign ligand is very attractive to meet both targeting and therapeutic requirements while reducing structural complexity. Here we fabricated a tumor microenvironment-activated self-targeting nanodrug, via co-assembly of hydroxycamptothecin (HCPT) and bi-functional methotrexate (MTX, not only has antitumor effect but also shows innate affinity towards folate receptors) followed by surface covering through acidity-responsive polyethylene glycol (PEG). Notably, the morphology and size of MTX-HCPT nanodrug could be tuned by varying the drug-to-drug ratio and assembly time. The PEG shell of our nanodrug could be detached in response to acidic tumor microenvironment, and then MTX could be exposed for self-targeting to enhance tumor cell uptake. Subsequently, the shell-detached nanodrug could be dissociated in relatively stronger acidic lysosomal environment, resulting in burst release of both drugs. Further in vitro and in vivo studies demonstrated that our nanodrug showed a ~2.98-fold increase in cancer cell uptake, a ~1.25-fold increase in drug accumulation at tumor site, a significantly lower CI50 value of ~0.3, a ~27.3% improvement in tumor inhibition comparing with the corresponding non-responsive nanodrug. Taken together, the here reported tumor microenvironment-activated self-recognizing nanodrug might be an extremely promising strategy for synergistically enhancing chemotherapy efficiency with minimized side effects.

Keywords

Carrier-free nanodrug,Chemotherapy,Self-recognizing,Small-molecule assembly,Tumor microenvironment,

OUR Recent Articles