Type 3 innate lymphoid cells are altered in colons of C57BL/6 mice with dioxin exposure.

Affiliation

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: [Email]

Abstract

Type 3 innate lymphoid cells (ILC3s) are distributed in the gut and regulate inflammation by secreting cytokines, including interferon (IFN)-γ and interleukin (IL)-17. The maintenance and function of ILC3s involve the activity of aryl hydrocarbon receptor (AhR), a potent ligand of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), one of the most toxic dioxin congeners. Thus, TCDD exposure might affect ILC3s. To obtain in vivo evidence supporting this notion, we exposed female C57BL/6 mice orally to TCDD (low/high doses: 0.1/10 μg/kg body weight) during pregnancy and lactation periods, and after the exposure, evaluated the mothers and offspring for alterations in ILC3 differentiation and function in the colon. ILC3 frequency among colonic lamina propria lymphocytes was preferentially diminished in the offspring, and, in parallel, the median fluorescence intensity (MFI) of retinoic acid receptor-related orphan receptor (ROR)γt, which is associated with ILC3 differentiation, was also decreased in ILC3s. Conversely, the percentages of two subsets of the cells, one positive for natural cytotoxicity receptor NKp46 and the other for IL-17a, were increased in TCDD-exposed mothers and offspring. Moreover, the percentage of IFN-γ+ ILC3s was increased specifically in the mothers, but this was in conjunction with a significant decrease in the MFI of IFN-γ, which suggests that the IFN-γ+ ILC3 subset was functionally altered. In conclusion, maternal exposure to TCDD suppresses ILC3 differentiation in the offspring and influences ILC3 function in distinct manners in the mother and offspring. Our study provides new insights into the intergenerational interference of dioxins in colonic ILC3s.