Using highly recyclable sodium caseinate to enhance lignocellulosic hydrolysis and cellulase recovery.

Affiliation

School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China. Electronic address: [Email]

Abstract

Most additives that capable of enhancing enzymatic hydrolysis of lignocellulose are petroleum-based, which are not easy to recycle with poor biodegradability. In this work, highly recyclable and biodegradable sodium caseinate (SC) was used to enhance lignocellulosic hydrolysis with improved cellulase recyclability. When the pH decreased from 5.5 to 4.8, more than 96% SC could be precipitated from the solution and recovered. Adding SC increased enzymatic digestibility of dilute acid pretreated eucalyptus (Eu-DA) from 39.5% to 78.2% under Eu-DA loading of 10 wt% and pH = 5.5, and increase cellulase content in 72 h hydrolysate from only 15.2% of the original to 60.0%, which facilitated the recovery of cellulases through re-adsorption by fresh substrates. With multiple cycles of re-adsorption, application of SC not only increased the sugar yield of Eu-DA by 95.5%, but also reduced cellulase loading by 40%.

Keywords

Cellulase recovery,Enzymatic hydrolysis,Recyclable,Sodium caseinate,

OUR Recent Articles