Tepotinib reverses ABCB1-mediated multidrug resistance in cancer cells.


Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. Electronic address: [Email]


Overexpression of ABCB1 transporters plays a crucial role in mediating multidrug resistance (MDR). Therefore, it is important to inhibit ABCB1 activity in order to maintain an effective intracellular level of chemotherapeutic drugs. Tepotinib is a MET tyrosine kinase inhibitor with potential anticancer effect and it is currently in clinical trials. In this study, we investigated whether tepotinib could antagonize ABC transporters-mediated MDR. Our results suggest that tepotinib significantly reversed ABCB1-mediated MDR but not ABCG2- or ABCC1-mediated MDR. Mechanistic studies show that tepotinib significantly reversed ABCB1-mediated MDR by attenuating the efflux activity of ABCB1 transporter. The ATPase assay showed that tepotinib inhibited the ATPase activity of ABCB1 in a concentration-dependent manner. Furthermore, treatment with tepotinib did not change protein expression or subcellular localization of ABCB1. Docking analysis indicated that tepotinib interacted with the drug-binding site of the ABCB1 transporter. Our study provides a potential chemotherapeutic strategy of co-administrating tepotinib with other conventional chemotherapeutic agents to overcome MDR and improve therapeutic effect.


ABCB1,ATP-binding cassette (ABC) transporter,Multidrug resistance (MDR),Tepotinib,Tyrosine kinase inhibitor,