SDRP Journal of Nanotechnology & Material Science

ISSN: 2574-1888

Impact Factor: 0.621

VOLUME: 1 ISSUE: 1

Page No: 1-12

Controlled Crystal-Growth and Structures of Silicon Nanowires for smart applications


Co-Authors

Maha Mohammed Khayyat, Brahim Aïssa, Esam H. Abdul-Hafidh, Mourad Nedil, Abdelhak Belaidi

Citation

Brahim Aissa, Controlled Crystal-Growth and Structures of Silicon Nanowires for smart applications(2018)SDRP Journal Of Nanotechnology & Material Science 1(1)

Abstract

One-dimensional nanostructures such as semiconductor nanowires (NWs) are attractive building blocks for the assembly of nanoelectronic and nanophotonic systems because they can function both as nanoscale devices and interconnects. Crystal growth of nanowires occurs mainly at the interfaces between the growing crystals and the supply media. This article reports on the silicon nanowires grown using a vapor-liquid-solid (VLS) concept. One of the key advantages and the beauty of VLS is that controlled placement or templating of the seed metal produces consequently templated NW growth. This templating is highly required for direct integration of NWs into nanodevices for various smart applications, including sensors, actuators, thermoelectricity generation and photovoltaics. We discuss the major questions related to the discovery of fundamentally new phenomena versus performance benchmarking for many of the Si-NWs applications. Finally we attempt to look into the future and discuss our opinion regarding the upcoming trends in NW research.

References

  1. Li, Y., Chen, Y., Li, X., Kamins, T.I., Nauka, K. and Williams, R.S. (2004), Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires, Nano Lett. 4, 245-147.

    View Article           
  2. Paulo, A. S., Arellano, N., Plaza, J. A., He, R., Carraro, C., Maboudian, R., Howe, R.T., Bokor, J., Yand, P. (2007) Suspended Mechanical Structures Based on Elastic Silicon Nanowire Arrays, Nano Lett 7, 4, 1100-1104. PMid:17375964

    View Article      PubMed/NCBI     
  3. Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W. and Gosele, U. (2006) Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor, Small 2, 1, 85-88. PMid:17193560

    View Article      PubMed/NCBI     
  4. Cui, Y., Zhong, Z., Wang, D., Wang, W. and Lieber, C.M. (2003) High Performance Silicon Nanowire Field Effect Transistor, Nano Lett. 3, 2, 149-152.

    View Article           
  5. Huo, J.; Solanki, R.; Freeouf, J. L. Carruthers (2004) J. R., Electroluminescence from silicon nanowires, Nanotechnology 15, 1848-1850.

  6. Cohen, G.; Reuter, M.; Wacaser, B.; Khayyat, M.; (2012) U.S. Serial No. US 2012/0090057A1 filed on October 7, 2010 entitled "Production scale fabrication method for high resolution AFM tips".

  7. Huang, Y.; Lieber, C. M., (2004) Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure and Applied Chemistry, 76 (12), 2051-2068.

    View Article           
  8. Kayes, B. M.; Atwater, H. A.; Lewis, N. S., (2005) Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. Journal of Applied Physics, 97 (11), 114302-11.

    View Article           
  9. Law, M.; Goldberger, J.; Yang, P. D., (2004) Semiconductor nanowires and nanotubes. Annual Review of Materials Research, 34, 83-122.

    View Article           
  10. Samuelson, L.; Thelander, C.; Bjork, M. T.; Borgstrom, M.; Deppert, K.; Dick, K. A.; Hansen, A. E.; Martensson, T.; Panev, N.; Persson, A. I.; Seifert, W.; Skold, N.; Larsson, M. W.; Wallenberg, L. R., (2004) Semiconductor nanowires for 0D and 1D physics and applications. Physica E-Low-Dimensional Systems and Nanostructures, 25 (2-3), 313-318.

    View Article           
  11. Givargizov, E. I. (1975) Fundamental aspects of VLS growth. Journal of Crystal Growth, 31, 20-30. 90105-0

    View Article           
  12. Wacaser, B. A.; Dick, K. A.; Johansson, J.; Borgstr?m, M. T.; Deppert, K.; Lars Samuelson, (2009) Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires. Advanced Materials, 21 (2), 153-165.

    View Article           
  13. Wacaser, B. A.; Reuter, M. C.; Khayyat, M. M.; Wen, C.-Y.; Haight, R.; Guha, S.; Ross, F. M., (2009) Growth System, Structure, and Doping of Aluminum-Seeded Epitaxial Silicon Nanowires. Nano Letters, 9 (9), 3296-3301 PMid:19639967

    View Article      PubMed/NCBI     
  14. Wagner, R. S.; Ellis, W. C., (2010) Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4 (5), 89-90.

  15. Fan, H. J.; Werner, P.; Zacharias, M., (2006) Semiconductor Nanowires: From Self-Organization to Patterned Growth. Small, 2 (6), 700-717. PMid:17193109

    View Article      PubMed/NCBI     
  16. Kayes, M. B.; Filler, M. A.; Putnam, M. C.; Kelzenberg, M. D.; Lewis, N. S. & Atwater, H. A (2007) Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts, Appl. Phys. Lett. 91, 103110.

    View Article           
  17. Westwater, J.; Gosain, D. P.; Tomiya, S and Usui, S., (1997) Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction, J. Vac. Sci. Technol. B 15(3).

    View Article           
  18. Westwater, J.; Gosain, D. P.; Usui, S., (1997) Control of the Size and Position of Silicon Nanowires Grown via the Vapor-Liquid-Solid Technique. Japanese Journal of Applied Physics, Part 1: Regular Papers, Short Notes & Review Papers, 36 (10), 6204-6209.

    View Article           
  19. Renard, V. T.; Jublot, M.; Gergaud, P.; Cherns, P.; Rouchon, D.; Chabli, A.; Jousseaume, V., (2009) Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nat Nano, 4 (10), 654-657. PMid:19809456

    View Article      PubMed/NCBI     
  20. Whang, S.; Lee, S.; Chi, D.; Yang, W.; Cho, B. ;Liew, Y. and Kwong, D. (2007) B-doping of vapour-liquid-solid grown Au-catalysed and Al-catalysed Si nanowires: effects of B2H6 gas during Si nanowires growth and B-doping by a post-synthesis in situ plasma process, Nanotechnology 18 275302, pp 1-4.

    View Article           
  21. Ke, Y.; Weng, X.; Redwing, J. M.; Eichfeld, C. M.; Swisher, T. R.; Mohney, S. E.; Habib, Y. M., (2009) Fabrication and Electrical Properties of Si Nanowires Synthesized by Al Catalyzed Vapor?Liquid?'Solid Growth. Nano Letters, 9 (12), 4494-4499. PMid:19904918

    View Article      PubMed/NCBI     
  22. Chaudhari, P.; Shim, H.; Wacaser, B. A.; Reuter, M. C.; Murray, C.; Reuter, K. B.; Jordan-Sweet, J.; Ross, F. M.; Guha, S., (2010) Heteroepitaxial silicon film growth at 600 ?C from an Al-Si eutectic melt. Thin Solid Films, 518 (19), 5368-5371.

    View Article           
  23. Tutuc, E.; Guha, S.; Chu, J. O., (2006) Morphology of germanium nanowires grown in presence of B2H6. Applied Physics Letters, 88 (4), 043113-3.

    View Article           
  24. Roberts, S.; Dobson, P. J., (1981) Evidence for reaction at the Al-SiO2 interface. Journal of Physics D: Applied Physics, 14 (3), L17.

    View Article           
  25. Krug, C.; da Rosa, E. B. O.; de Almeida, R. M. C.; Morais, J.; Baumvol, I. J. R.; Salgado, T. D. M.; Stedile, F. C., Atomic Transport and Chemical Stability during Annealing of Ultrathin Al_{2}O_{3} Films on Si. Physical Review Letters 2000, 85 (19), 4120 PMid:11056639

    View Article      PubMed/NCBI     
  26. Wang, K.; Gunawan, O.; Moumen, N.; Tulevski, G.; Mohamed, H.; Fallah, B.; Tutuc, E.; Guha, S., Wire-textured silicon solar cells, IEEE Proceedings PVSC 2010, 35, 000913 - 000917.

  27. Lauhon, L., Gudisen, M. and Lieber, C. (2004) Semiconductor nanowire heterostructures Philosophical Transactions of the Royal Society of London. Series A 362, 1247-1260. PMid:15306476

    View Article      PubMed/NCBI     
  28. Bootsma, G. A. and Gassen, H.J. (1971) A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane. Journal of Crystal Growth 10, 223-234. 90188-6

    View Article           
  29. Kamins, T. I.; Williams, R. S.; Basile, D. P.; Hesjedal, T.; Harris, J. S., (2001) Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. Journal of Applied Physics, 89 (2), 1008-1016.

    View Article           
  30. Persson, A. I., Larsson, M.W., Stenstrom, S., Ohlsson, B. J., Samuelson, L. & Wallenberg, L. R. (2004) Solid-phase diffusion mechanism for GaAs nanowire growth. Nature Materials 3, 677-681. PMid:15378051

    View Article      PubMed/NCBI     
  31. Trentler, T. J., Hickman, K. M., Goel, S. C., Viano, A. M., Gibbons, P. C. and Buhro, W. E. (1995) Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 270, 1791-1794.

    View Article           
  32. Fang, Y. P., Wen, X. G. & Yang, (2006) S. H. Hollow and tin-filled nanotubes of single-crystalline In (OH)(3) grown by a solution-liquid-solid-solid route. Angewandte Chemie-International Edition 45, 4655-4658. PMid:16791892

    View Article      PubMed/NCBI     
  33. Zhang, L. Li, Y.; Li, G. and Zhang, L. (2003), Chem. Phys. Lett. 378, 244. 01264-8

    View Article           
  34. Tian, M.; Wang, J.; Kumar, N.; Han, T.; Kobayashi, Y.; Liu, Y.; Mallouk, T.E.; and Chen, M.H.W. (2006) Nano Lett., 6,2773. PMid:17163704

    View Article      PubMed/NCBI     
  35. Civale, Y.; Nanver, L. K.; Hadley, P.; Goudena, E. J. G.; Schellevis, H., (2006) Sub-500?C solid-phase epitaxy of ultra-abrupt p+-silicon elevated contacts and diodes. IEEE Electron Device Letters, 27, 341- 343.

    View Article           
  36. Givargizov, E. I. (1975) Fundamental aspects of VLS growth. Journal of Crystal Growth, 31, 20-30. 90105-0

    View Article           
  37. Hutchby, J.; Bourianoff, G.I.; Zhirnov, V.V. and Brewer, J.E. (2002) IEEE Cir Dev. 28.

  38. Johansson, J.;Wacaser, B.A.; Dick, K.A.; and Seifert, W. (2006) Nanotechnology 17, S355.

    View Article           
  39. Meyyappan, M; and Sunkara, M. K. (2010) Inorganic nanowires: Applications properties and characterization, Taylor and Francis group, LLC, USA.

  40. Guichard, A. R.; Barsic, D.N.; Sharma, S.; Kamins, T.I. and Brongersma, M.L. (2006) Nano Lett. 6, 2140. PMid:16968040

    View Article      PubMed/NCBI     
  41. Baron, T.; Gordon, M.; Dhalluin, F.; Ternon, C.; Ferret, P.; and Gentile, P. (2006) Appl. Phys. Lett. 80, 23311.

  42. US Department of Energy (2005) Basic Research Needs for Solar Energy Utilization, Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, Published by the Office of Science.

  43. Kelzenberg, M. D.; Boettcher, S. W. ; Petykiewicz, J. A. ; Turner-Evans, D. B. ; Putnam, M. C. ; Warren, E. L. ; Spurgeon, J. M. ; Briggs, R. M. ; Lewis, N. S. and Atwater, H. A. (2010) Nature Materials, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, p.1-5.

  44. Oh, J.; Yuan, H. and Branz, H. (2012) An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures, Nature Nanotechnology, Advance Online Publication 1-6.

    View Article           
  45. Peng, K.; Xu, Y.; Wu, Y.; Yan, Y.; Lee, S. T. and Zhu, J. (2005) small 1, 1062.

  46. Hui, F.; Xudong, L.; Shuang, S.; Ying, X. and Jing, Z. (2008) Nanotechnology 19, 255703. PMid:21828836

    View Article      PubMed/NCBI     
  47. Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, Putnam, M. C.; Lewis, N. S. & Atwater, H. A. (2008) Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells, Nano Lett. 8, 2, 710-714. PMid:18269257

    View Article      PubMed/NCBI     

Journal Recent Articles