Journal of Computational Chemistry & Molecular Modeling

ISSN: 2473-6260

Impact Factor: 0.827

VOLUME: 5 ISSUE: 1

Page No: 550-560

Quantum and Structural Molecular Fragment models used to predict anti-inflammatory activity


Affiliation

Cyrille MENYE 1*, Francis Rollin NDOM 2, Claude Marie NGABIRENG ², Siméon KOUAM FOGUE 3

1* Department of Physics / Faculty of sciences/, University of Douala, Douala, Cameroon

2 Department  of  Mathematics  and  Physical  Science / National  Advanced  School  of  Engineering/,  University  of Yaounde I, Yaounde, Cameroon

3 Department of Chemistry /Higher Teachers’ Training College/ University of Yaounde I, Yaounde, Cameroon

Citation

MENYE Cyrille, Francis Rollin NDOM , Claude Marie NGABIRENG , Siméon KOUAM FOGUE, Quantum and Structural Molecular Fragment models used to predict anti-inflammatory activity (2021) Journal of Computational Chemistry & Molecular Modeling 5(1) :550-560

Abstract

In this paper, we predict the anti-inflammatory activity of a series of 26 structures of N-arylanthranilic acid. So, Quantitatve Structure-Activity Relationship (QSAR) method remains the focus of many studies aimed at modeling and prediction of physicochemical properties or biological activities of molecule.  Two models was used: quantum model and Structural Molecular Fragment (SMF) model. In the first model, semi-empirical (AM1) approach was used to calculate the quantum chemical descriptors using GAUSSIAN 09 package and the others chemical descriptors were calculated with chemaxon package. In the second model, Structural Molecular Fragment were generated by I.S.I.D.A (In Silico Design and Data Analysis). Our two models were built by using a Multiple Linear Regression Analysis (MLR).The concluded QSAR models reflected that the drugs activity was mainly attributed to quantum chemical descriptors with the statistical analysis of multiple R-squared equal to 0.9898 v.s 0.9077 for the Structural Molecular Fragment developed in I.S.I.D.A.

Keywords: N-arylanthranilic acids, anti-inflammatory activity, quantum descriptors, Structural Molecular Fragment.

Introduction

Non-Steroidal Anti-Inflammatory Drugs (NSAIDS) are still the most prescribed drugs worldwide for the treatment of inflammatory diseases like rheumatoid arthritis, osteoarthritis, orthopedic injuries, post-operative pain, acute myalgias etc. [1, 2]. N-arylanthranilic acids belong to the category of NSAIDS. They are amino isosteres of salicylates and are also known as fenemates. Important molecules of this class include mefenamic acid, flufenamic acid and meclofenamic acid. Fenemates act by blocking the metabolism of arachidonic acid by the enzyme cyclooxygenase (COX), one of the key enzymes in the arachidonic acid cascade [3-5]. This enzyme bis-oxygenates arachidonic acid to prostaglandine G2, which is subsequently degraded to vasoactive and inflammatory mediators such as prostanglandins (PGS), prostacyclin (PGI2), and thromboxane-A2[6]. Some fenemates also inhibit arachidonic acid lipoxygenase resulting in decreased synthesis of leukotrines, known mediators involved in inflammatory process [7]. Studies suggest that flufenamic and tolfenamic acids suppress proliferation of human peripheral blood lymphocytes by a mechanism, which involves inhibition of Ca2+ influx and is not related to inhibition of prostanoid synthesis [8].

Quantitative structure-activity and structure property relationship (QSAR/QSPR) studies are unquestionably of great importance in modern chemistry and biochemistry [9]. The concept of QSAR/QSPR is to transform searches for compounds with desired properties using chemical intuition and experience into a mathematically quantified and computerized form [10]. Once a correlation between structure and activity/property is found, any number of compounds, including those not yet synthesized, can be readily screened on the computer to select structures with the properties desired [11, 12]. It is then possible to select the most promising compounds to synthesize and test in the laboratory. Thus, the QSAR/QSPR approach conserves resource and accelerates the process of development of new molecules for use as drugs, materials, additives, or for any other purpose [13-16].

In the present study, relationship of chemical quantum and structural molecular fragment with anti-inflammatory activity of N-arylanthranilic acids derivatives has been investigated and suitable models developed for the prediction of anti-inflammatory activity.

Materials & Methods

In this study, we used the following materials: gaussian09 [17], chemaxon [18], ISIDA/QSPR [19-37], R [38] and data set of the 26 anthranilic acids molecule belonging to a group of NSAIDs were taken from the literature with their experimental activities (table.1) [39].

https://www.siftdesk.org/articles/images/10752/1.png

Figure 1. chemical structure of anthranilic acid

Table1. A dataset of 26 N-arylanthranilic acids with anti-inlammatory activity [22]

Mol

R1

R2

R3

R4

R5

MEDa

Aexp

1

Cl

H

CF3

H

Cl

0.8

3.699

2

CH3

SO2N(CH3)2

H

H

CH3

0.5

3.903

3

CH3

NH2

H

H

Cl

6.2

2.809

4

CH3

CH3

H

H

Cl

12.5

2.505

5

Cl

Cl

H

H

CH3

0.8

3.699

6

Cl

H

C2H5

H

Cl

0.8

3.699

7

Cl

H

Cl

Cl

H

400

1.000

8

Cl

Cl

Cl

H

H

200

1.301

9

Cl

H

Cl

H

Cl

100

1.602

10

NH2

CH3

H

H

CH3

25

2.204

11

CH3

CH3

H

H

CH3

6.2

2.809

12

Cl

CH3

H

H

CH3

3.1

3.110

13

CH3

Cl

H

CH3

H

1.6

3.397

14

CH3

C2H5

H

H

CH3

1.6

3.397

15

CH3

NH2

H

H

Cl

1.3

3.488

16

CH3

SO2CH3

H

H

CH3

0.6

3.823

17

Cl

N(CH3)2

H

H

Cl

0.6

3.823

18

CH3

SOCH3

H

H

CH3

0.5

3.903

19

Cl

Cl

Cl

H

CH3

12.5

2.505

20

CH3

CH3

H

CH3

CH3

100

1.602

21

Cl

Cl

Cl

H

Cl

12.5

2.505

22

Cl

CH3

Cl

H

Cl

12.5

2.505

23

Cl

Cl

Cl

Cl

H

100

1.602

24

Cl

Cl

H

Cl

Cl

1.6

3.397

25

Cl

Cl

Cl

Cl

Cl

25

2.204

26

CH3

CH3

Cl

CH3

Cl

100

1.602

 The biological activity A was calculated from the minimal effective dose (MED mg/kgbody) by formula: A= log(4000/MED)

 

To perform our two models, we are using Multiple Linear Regression Analysis (MLR). The first model used quantum descriptors; 23 quantum chemical descriptors were computed with Gaussian 09. The semi-empirical AM1 method was employed for the calculation of this descriptors (Table 2). Chemaxon software with Marvin suite is a chemically intelligent desktop toolkit built to help us draw, edit, publish, render, import and export chemical structures and as well as allowing us to convert between various chemical and graphical file formats. Software R provides a wide variety of statistical (linear and nonlinear modeling, classical statistical test…) and graphical techniques.

Heuristic method was applied to the whole dataset of the N-arylanthranilic acids, a pre-selection of descriptors occurs.  Descriptors unavailable for some compounds are discarded altogether with the invariant descriptors and descriptors that correlate poorly.  Additional descriptors are discarded when high inter-correlations between them are found. The remaining descriptors are then ranked according to their correlation coefficients.

Table 2. calculated quantum chemical descriptors of anthranilic acids (1-26)

D1Q

D2Q

D3Q

D4Q

D5Q

D6Q

D7Q

D8Q

D9Q

D10Q

D11Q

1

0.493

-0.406

-0.333

-0.0551

135.969

59.388

128.307

-72.059

4.213

295.11

127.847

2

2.699

-0.962

-0.328

-0.0523

230.036

63.712

119.385

-142.96

9.243

294.226

193.816

3

0.342

-0.425

-0.319

-0.0447

164.348

50.858

110.53

-96.746

4.449

282.365

121.626

4

0.339

-0.427

-0.317

-0.0442

170.92

50.31

108.883

-101.92

3.723

280.574

125.987

5

0.34

-0.418

-0.324

-0.0493

147.951

51.347

112.229

-84.355

5.692

278.86

139.435

6

0.349

-0.414

-0.321

-0.0461

166.363

54.902

117.558

-96.687

4.446

303.441

133.932

7

0.348

-0.413

-0.329

-0.0541

125.019

52.595

118.413

-66.195

4.168

317.732

123.078

8

0.347

-0.414

-0.329

-0.0539

125.036

52.512

119.138

-66.049

5.466

316.384

125.412

9

0.356

-0.41

-0.329

-0.0516

124.947

52.541

117.487

-66.344

3.909

307.437

121.546

10

0.324

-0.44

-0.314

-0.0473

187.972

51.667

110.257

-114.12

4.545

279.002

133.142

11

0.321

-0.437

-0.309

-0.0426

194.558

51.102

108.792

-119.27

4.06

281.88

131.881

12

0.333

-0.423

-0.316

-0.0443

170.813

50.452

108.398

-101.95

4.934

276.803

133.681

13

0.33

-0.431

-0.318

-0.0473

170.813

50.639

110.432

-101.51

4.722

290.707

130.305

14

0.321

-0.437

-0.309

-0.0424

213.235

54.404

111.756

-132.31

4.096

293.214

136.805

15

0.341

-0.425

-0.318

-0.0442

199.994

54.129

110.232

-122.94

4.376

301.779

141.254

16

0.322

-0.431

-0.33

-0.0703

200.408

65.452

126.23

-119.75

9.888

315.169

170.596

17

0.352

-0.412

-0.323

-0.0466

177.581

57.27

120.913

-104.18

5

296.863

150.625

18

0.329

-0.429

-0.319

-0.0492

197.361

59.424

119.83

-118.91

5.339

320.036

169.783

19

0.345

-0.415

-0.327

-0.0532

142.744

54.694

117.589

-79.367

5.688

320.386

135.133

20

0.32

-0.437

-0.308

-0.0418

212.605

52.923

108.295

-132.6

4.3

295.67

131.93

21

0.361

-0.406

-0.333

-0.0547

119.751

55.822

122.084

-61.531

4.511

319.511

139.307

22

0.356

-0.41

-0.327

-0.0505

142.958

54.877

117.877

-79.205

3.678

315.923

132.628

23

0.353

-0.41

-0.334

-0.0564

119.827

55.909

123.598

-61.256

4.917

327.476

141.484

24

0.362

-0.405

-0.333

-0.0542

119.734

55.87

122.284

-61.475

3.886

294.038

157.987

25

0.365

-0.403

-0.336

-0.0575

114.566

59.123

127.225

-56.607

4.222

330.366

158.156

26

0.344

-0.425

-0.318

-0.0475

184.058

57.825

119.32

-109.27

3.379

327.114

137.322

 

Table 2: (continued) calculated quantum chemical descriptors of anthranilic acids (1-26)

 

Q12Q

D13Q

D14Q

D15Q

D16Q

D17Q

D18Q

D19Q

D20Q

D21Q

D22Q

D23Q

1

124.929

-1.311

-1.652

-3.646

0.139

7.191

0.194

-0.194

0.136

182.629

28473.499

17.749

2

166.065

2.787

0.618

-8.791

0.138

7.263

0.190

-0.190

0.131

218.036

13638.764

85.433

3

128.524

-2.464

1.692

-3.295

0.137

7.287

0.182

-0.182

0.121

177.505

24775.831

19.794

4

129.211

-1.933

0.44

-3.151

0.136

7.331

0.181

-0.181

0.120

178.591

23409.146

13.861

5

120.605

0.481

3.857

-4.158

0.137

7.293

0.186

-0.186

0.127

179.633

22419.272

32.399

6

130.877

-2.456

1.549

-3.366

0.137

7.283

0.183

-0.183

0.122

189.417

29260.484

19.767

7

115.183

-0.704

-1.171

-3.937

0.138

7.273

0.192

-0.192

0.133

185.331

39489.304

17.372

8

112.254

-1.46

-1.457

-5.062

0.137

7.282

0.191

-0.191

0.133

184.683

39156.247

29.877

9

115.767

0.082

-1.651

-3.542

0.138

7.220

0.190

-0.190

0.130

181.583

35663.125

15.280

10

120.36

-0.48

0.251

4.518

0.134

7.485

0.181

-0.181

0.122

177.501

23302.902

20.657

11

124.914

1.525

0.291

-3.751

0.133

7.499

0.176

-0.176

0.116

179.558

23593.282

16.484

12

126.315

-1.464

2.502

-3.992

0.136

7.362

0.180

-0.180

0.119

178.933

21592.401

24.344

13

126.763

-0.247

2.403

-4.057

0.135

7.385

0.183

-0.183

0.123

182.592

26309.491

22.297

14

135.063

-1.466

0.621

-3.773

0.133

7.504

0.176

-0.176

0.116

188.361

24739.274

16.777

15

144.089

-2.25

1.795

-3.295

0.137

7.302

0.181

-0.181

0.120

195.707

25321.224

19.149

16

157.461

4.881

1.649

-8.439

0.130

7.699

0.200

-0.200

0.154

214.409

22972.847

97.773

17

138.271

-1.976

3.081

-3.405

0.138

7.245

0.185

-0.185

0.124

195.253

23344.798

25.000

18

136.104

0.2

4.833

-2.259

0.135

7.421

0.184

-0.184

0.126

208.641

28770.610

28.505

19

120.823

1.522

3.577

-4.152

0.137

7.317

0.190

-0.190

0.132

192.114

37174.421

32.353

20

141.262

2.054

-1.694

-3.376

0.133

7.524

0.175

-0.175

0.115

189.621

25369.852

18.490

21

115.935

1.116

2.53

-3.563

0.139

7.191

0.194

-0.194

0.135

191.584

37231.460

20.349

22

122.702

-0.3

1.347

-3.409

0.138

7.241

0.189

-0.189

0.129

190.418

35514.969

13.528

23

115.943

-1.673

-2.543

-3.861

0.139

7.210

0.195

-0.195

0.137

194.968

39995.788

24.177

24

116.463

0.062

1.88

-3.401

0.139

7.184

0.193

-0.193

0.134

189.496

25883.499

15.101

25

116.199

-1.403

-1.871

-3.514

0.139

7.169

0.197

-0.197

0.139

201.574

38642.089

17.825

26

135.721

-0.465

0.563

-3.298

0.135

7.383

0.183

-0.183

0.123

200.052

36327.423

11.418

D1Q: charge max, D2Q: charge min, D3Q: HOMO-energy, D4Q: LUMO-energy, D5Q: thermal energy,  D6Q: constant volume molar heat capacity, D7Q: entropy, D8Q: partition function,  D9Q: molecular dipole moment, D10Q: polarizability- αxx, D11Q: polarizability- αyy, D12Q: polarizability- αzz, D13Q: component of dipole along inertia axe x, D14Q: component of dipole along inertia axe y, D15Q: component of dipole along inertia axe z, D16Q: absolute hardness, D17Q: inverse of hardness, D18Q: chemical potential,  D19Q: electro negativity D20Q: electrophilicity index, D21Q: mean polarizability of molecule D22Q: anisotropy of polarisability, D23Q: square of molecular dipole moment.

 

To decide whether a model generated is good or not is commonly defined by the square coefficient of fitting model (R2), adjusted R-squared(R2adj) and Fisher Statistic (F).

https://www.siftdesk.org/articles/images/10752/e1-e3.png

The second model used is Structural Molecular Fragment (SMF), this method is developed in ISIDA/QSPR, the latest is based on the splitting of a molecular graph on fragments (subgraphs), and on the calculation of their contributions to a given property Y. Two classes of fragments are used: “sequences” (I) and “augmented atoms” (II). Three sub-types of AB, A and B are defined for each class. For the fragments I, they represent sequences of atoms and bonds (AB), of atoms only (A), or of bonds only (B). Shortest or all paths from one atom to the other are used. For each type of sequences, the minimal (nmin) and maximal (nmax) number of constituted atoms must be defined. Thus, for the partitioning I (AB, nmin - nmax), I (A, nmin - nmax) and I (B, nmin- nmax), the program generates “intermediate” sequences involving n atoms (nmin ≤ n ≤ nmax). In the current version of ISIDA/QSPR, nmin ≥ 2 and nmax ≤ 15. The number of sequence’s types of different length corresponding to nmin = 2 and nmax= 15 is equal to 105 for each of three subtypes AB, A and B, totally 315 types of sequences. QSPR modeling was performed using Multiple Linear Regression Analysis (MLR) of the ISIDA/QSPR program with combined forward and backward stepwise variable selection techniques. MLR is applied to build linear relationships between independent variables (SMF descriptors: Ni i =1, 2…) and a dependent variable (here target property Y = A)

https://www.siftdesk.org/articles/images/10752/e4.png

where every descriptor value is associated with observed property value (A), is descriptor contribution, and  is the independent term which is omitted in a part of models see table (3). The Singular Value Decomposition method is used to fit contributions and to minimize the sum of squared residuals which are squared differences between the property values calculated by the model   and observed values  in the training set. The program can generate more than 25,000 MLR models; each of them corresponds to particular type of the SMF descriptors  and  MLR equation (a0= 0 or a0≠0) and applied variable selection technique.

Table 3. Example of ISIDA Model

https://www.siftdesk.org/articles/images/10752/t3.png

To validate consensus model, the external 5-fold cross validation (5-CV) was applied. [40-42] ISIDA, implicitly keeps every 5th compound in the test set, the initial set was randomly split into 5 subsets, each of which was iteratively ignored at the training stage, to serve as internal validation set while the four others formed, together, the learning set. For each of these 5 splitting schemes, models were built followed by prediction calculations on the corresponding validation set. Finally, all values calculated for five test sets are merged into one file to analyse overall linear correlations between experimental and predicted property. One can use Determination Coefficient (R2) (1), Root Mean Squared Error (RMSE) or Mean Average Error (MAE), to estimate the quality of the linear correlation between predicted (Apred) and experimental (Aexp) data for n compounds. Formulas for the statistical parameters are formulated below.

https://www.siftdesk.org/articles/images/10752/e5-e6.png

ISIDA calculates a Consensus Model (CM) combining the information issued from several models. At the first step, hundreds of models are built using different initial pools of descriptors corresponding to different fragmentation types.

The contributions of are calculated by minimizing a functional

https://www.siftdesk.org/articles/images/10752/e7.png

where n is the number of the compounds in the training set, wi the weight accounting for the accuracy of the experimental data, Aexp and Acalc are, respectively, experimental and calculated.

 Linear equations (4) are obtained by the contribution matrix Mij

https://www.siftdesk.org/articles/images/10752/e8.png

 

Results

3.1. Quantum model

With quantum-chemical descriptors, 18 descriptors were evicted in the reached model which are listed in table 1 while their numerical values are in equation Acal(9).

https://www.siftdesk.org/articles/images/10752/acaleq.png

Table 4. A dataset of 26 N-arylanthranilic acids with calculated anti-inflammatory activity

Mol

R1

R2

R3

R4

R5

MEDa

Aexp

Acal

Aexp-   Aexp

1

Cl

H

CF3

H

Cl

0.8

3.699

3.725

-0.026

2

CH3

SO2N(CH3)2

H

H

CH3

0.5

3.903

3.902

0.001

3

CH3

NH2

H

H

Cl

6.2

2.809

2.863

-0.054

4

CH3

CH3

H

H

Cl

12.5

2.505

2.546

-0.041

5

Cl

Cl

H

H

CH3

0.8

3.699

3.525

0.174

6

Cl

H

C2H5

H

Cl

0.8

3.699

3.529

0.170

7

Cl

H

Cl

Cl

H

400

1.000

0.919

0.081

8

Cl

Cl

Cl

H

H

200

1.301

1.404

-0.103

9

Cl

H

Cl

H

Cl

100

1.602

1.747

-0.145

10

NH2

CH3

H

H

CH3

25

2.204

2.180

0.024

11

CH3

CH3

H

H

CH3

6.2

2.809

2.755

0.054

12

Cl

CH3

H

H

CH3

3.1

3.110

3.291

-0.181

13

CH3

Cl

H

CH3

H

1.6

3.397

3.369

0.028

14

CH3

C2H5

H

H

CH3

1.6

3.397

3.351

0.046

15

CH3

NH2

H

H

Cl

1.3

3.488

3.455

0.033

16

CH3

SO2CH3

H

H

CH3

0.6

3.823

3.829

-0.006

17

Cl

N(CH3)2

H

H

Cl

0.6

3.823

3.822

0.001

18

CH3

SOCH3

H

H

CH3

0.5

3.903

4.078

-0.175

19

Cl

Cl

Cl

H

CH3

12.5

2.505

2.389

0.116

20

CH3

CH3

H

CH3

CH3

100

1.602

1.611

-0.009

21

Cl

Cl

Cl

H

Cl

12.5

2.505

2.613

-0.108

22

Cl

CH3

Cl

H

Cl

12.5

2.505

2.505

0.000

23

Cl

Cl

Cl

Cl

H

100

1.602

1.607

-0.005

24

Cl

Cl

H

Cl

Cl

1.6

3.397

3.397

0.000

25

Cl

Cl

Cl

Cl

Cl

25

2.204

2.091

0.113

26

CH3

CH3

Cl

CH3

Cl

100

1.602

1.588

0.014

The dataset N-arylanthranilic acids (1-26), the model shows the best correlation with R2=0.989 (Figure 2)

https://www.siftdesk.org/articles/images/10752/2.png

Figure 2. The plot Acal v.s Aexp

3.2. Structural Molecular Fragment (SMF) model

ISIDA generates 582 predefined fragments (SMF), but among these 582 fragments, 24 contributed to build our model. The contribution matrix (8)

https://www.siftdesk.org/articles/images/10752/meq.png

Table 5. Structural Molecular Fragment (SMF) with contributions ai

24 SMF

 

1

C-C=O

SMF1

-0.398275

2

C-N-C

SMF2

0.204297

3

C-C-C-N

SMF3

1.236656

4

C=C-C-N

SMF4

-0.493310

5

C-C-C-O

SMF5

1.447280

6

C-C-C=C-N

SMF6

-0.731878

7

C-C-C=C-C

SMF7

-0.338618

8

C-C=C-C-F

SMF8

-0.887086

9

C-C=C-C-C-F

SMF9

0.597106

10

C-C-C=C-N-C-C-C-O

SMF10

1.220001

11

C-C=C-C-N-C=C-C-C-F

SMF11

0.675218

12

Cl-C=C-C

SMF12

-0.325778

13

Cl-C-C=C-N-C-C-C-O

SMF13

1.365737

14

C-C-C-C

SMF14

0.857632

15

Cl-C-C=C-C-N-C-C=C-C

SMF15

-0.402841

16

Cl-C=C-N-C-C-C-O

SMF16

0.916635

17

S-C-C-C

SMF17

1.015195

18

Cl-C-C-C

SMF18

0.453626

19

Cl-C-C-Cl

SMF19

-0.470649

20

Cl-C-C-N-C

SMF20

0.718064

21

Cl-C=C-C=C-Cl

SMF21

0.620912

22

C-C-C=C-C-C

SMF22

-0.378501

23

C-C-C-C=C-C-N

SMF23

0.845447

24

S-C-C=C-C-C

SMF24

0.794212

From the contribution matrix and table (5), we will express the predicted activity as a linear function of Structural Molecular Fragment. Here we have 26 equations, so one for each molecule. Let express the linear equation of molecule number 1.

https://www.siftdesk.org/articles/images/10752/acal2.png

The predicted activity of all these molecules is confined in table (6) below:

Table 6. A dataset of 26 N-arylanthranilic acids with calculated anti-inflammatory activity

Mol

R1

R2

R3

R4

R5

MED

AEXP

ACAL

AEXP- ACAL

1

Cl

H

CF3

H

Cl

0.8

3.699

3.699000

-0.000000

2

CH3

SO2N(CH3)2

H

H

CH3

0.5

3.903

4.076463

-0.176463

3

CH3

NH2

H

H

Cl

6.2

2.809

2.638972

0.161028

4

CH3

CH3

H

H

Cl

12.5

2.505

2.902764

-0.402764

5

Cl

Cl

H

H

CH3

0.8

3.699

3.561545

0.128455

6

Cl

H

C2H5

H

Cl

0.8

3.699

3.512326

0.177674

7

Cl

H

Cl

Cl

H

400

1.000

1.190064

-0.190064

8

Cl

Cl

Cl

H

H

200

1.301

1.934889

-0.634889

9

Cl

H

Cl

H

Cl

100

1.602

1.757864

-0.157864

10

NH2

CH3

H

H

CH3

25

2.204

2.183851

0.016149

11

CH3

CH3

H

H

CH3

6.2

2.808

2.691396

0.108604

12

Cl

CH3

H

H

CH3

3.1

3.110

3.216865

-0.106865

13

CH3

Cl

H

CH3

H

1.6

3.390000

2.996924

0.393076

14

CH3

C2H5

H

H

CH3

1.6

3.397

3.210410

0.179590

15

CH3

NH2

H

H

Cl

1.3

3.488

3.251863

0.228137

16

CH3

SO2CH3

H

H

CH3

0.6

3.823

3.872166

-0.052166

17

Cl

N(CH3)2

H

H

Cl

0.6

3.823

4.042193

-0.222193

18

CH3

SOCH3

H

H

CH3

0.5

3.903

3.872166

0.027834

19

Cl

Cl

Cl

H

CH3

12.5

2.505

2.832926

-0.332926

20

CH3

CH3

H

CH3

CH3

100

1.602

2.352778

-0.752778

21

Cl

Cl

Cl

H

Cl

12.5

2.505

2.327175

0.172825

22

Cl

CH3

Cl

H

Cl

12.5

2.505

2.035218

0.464782

23

Cl

Cl

Cl

Cl

H

100

1.602

1.759374

-0.159374

24

Cl

Cl

H

Cl

Cl

1.6

3.397

3.350928

0.039072

25

Cl

Cl

Cl

Cl

Cl

25

2.204

2.151661

0.048339

26

CH3

CH3

Cl

CH3

Cl

100

1.602

1.637597

-0.037597

https://www.siftdesk.org/articles/images/10752/3.png

Figure 3.  The plot Acal v.s Aexp

 

The quantum model give a squared correlation coefficient (R²=0.9898), a Root Mean Square Error (RMSE=0.090), an adjusted R-squared (R²adj= 0.9577) and Mean Average Error (MAE= 0.065), also The ISIDA model give a squared correlation coefficient (R²= 0.9077), a Root Mean Square Error (RMSE= 0.277), an adjusted R-squared (R²adj= 0.8351) and Mean Average Error (MAE=0.206). See table (7)

Table 7. The results of QSAR analysis by MLR for Quantum model and ISIDA model for the compounds in series 1-26

 

MLR Equation

n

R²adj

MAE

RMSE

Quantum model

Equation (9)

26

0.9898

0.9577

0.065

0.090

ISIDA model

Equation (10)

26

0.9077

0.8351

0.206

0.277

 

Conclusion

The QSAR studies were conducted with a series of 26 structures of N-arylanthranilic acid and some useful predictive molecular models were obtained. The physicochemical descriptors were found to have an important role in the determining of the activity. To test the robustness of these models, we evaluate the coefficient of correlation, R², which defines the degree of dependence between theoretical and experimental variables. Two models were studied, quantum model and Structural Molecular Fragment (SMF) model. The two models present a good coefficient correlation, 0.989 and 0.907 respectively. Among the two QSAR models (quantum and ISIDA), results of quantum analysis showed significant predictive power. But the advantages of Structural Molecular Fragment model are the power of fragment descriptors originates from their universality, very high computational efficacy, simplicity of interpretation, as well as their high diversity and versatility.

Acknowledgement

Part of this work was supported by international foundation of science ﴾ No. F/4893-1﴿ and the third world academy science ﴾ No.10.004RG/CHE/AF /AC-I ﴿. SFK also thank the Humboldt Foundation for equipment.

References

  1. J.H. Botting. Nonsteroidal antiinflammatory agents. Drugs today (1999), 35, 225-235.

    View Article           
  2. S. Prasanna , E. Manivannan, S.C. Chaturvedi, QSAR analyses of conformationally restricted 1,5-diaryl pyrazoles as selective COX-2 inhibitors: application of connection table representation of ligands, Bioorg & Med Chem Let, (2005), 15, 8, 2097-2102.

    View Article           
  3. J.R.Vane and R.M. Botting, new insights into the mode of action of anti-inflammatory drugs. Inflamm. Res. 44(1995) 1-10.

    View Article           
  4. J. G. Hardman and L. E. Limbird (Eds.),Goodman & Gilman's The Pharmacological Basis of Therapeutics, Int. Ed McGraw-Hill, USA, (1996), . 635.

  5. Edmond C. Ku, Warren Lee, Himanshu V. Kothari, Dietrich W. Scholer, Effect of diclofenac sodium on the arachidonic acid cascade. The American Journal of Medicine. Volume 80, Issue 4, 28 April (1986), Pages 18-2 90074-4

    View Article           
  6. C. Almansa, J. Alfon, A. F. Arriba, F. L. Cavalcanti, I. Escamilla, L. A. Gomez, A. Miralles, R. Solvia, J. Bartroli, E. Caraceller, M. Merlos, and J. G. Rafanell,J. Synthesis and Structure-Activity Relationship of a New Series of COX-2 Selective Inhibitors: 1,5-Diarylimidazoles. Med. Chem.46 (2003) 3463-3475.

    View Article           
  7. J. R. Mclean and M. I. Gluckman,Arzneim. On the mechanism of the pharmacologic activity of meclofenamate sodium. Forsch.33 (1983) 627-631

  8. H. Kankaanranta, M. Luomala, A. Kosonen, and E. Moilanen,Br. Inhibition by fenamates of calcium influx and proliferation of human lymphocytes J. Pharmacol.119(1996) 487-494.

    View Article           
  9. B.K. Tiwari, A. Thakur, M. Thakur, N. D. Pandey, S. S. Narvi, and S. Thakur. Modeling of cytotoxicity on some non- nucleoside reverse transcriptase inhibitors of HIV-1: role of physicochemical parameters. ARKIVOC (2006) (ii) 213-225.

    View Article           
  10. Vesna Dimova, Katica Colanceska Ragenovic and Vladimir Kakurinov. QSAR of Some N-Aryl/Heteroarylaminomethyl/ethyl-1,2,4-Triazoles Part II: Antimicrobial Activity Against Bacillus Subtilis . Int. J. Mol. Sci. (2006), 7, 119-129.

    View Article           
  11. Sofie Van Damme. Quantum chemistry in QSAR Quantum chemical descriptors Use, benefits and drawbacks. Thesis submitted in fulfillment of the requirements for the degree of Doctor (Ph.D.) in Sciences: Chemistry, 2009

  12. Ojha Lokendra Kumar , Chaturvedi Ajay M, Bhardwaj Arpan. QSAR study of some TIBO derivatives: A non conventional topological parameter approach. Int. J. Res. Chem. Env. (2011), 16-23

  13. A. Beheshti, P. Norouzi, M. R. Ganjali. A Simple and Robust Model for Predicting the Reduction Potential of Quinones Family; Electrophilicity Index Effect. Int. J. Electrochem. Sci.,7(2012), 4811 -4821.

  14. Gustavo P. ROMANELLI, Juan Carlos AUTINO, Eduardo A. CASTRO. Application of Quantitative Structure-Retention Relationships (QSRR) to a Set of Organic Bromo and Nitrile Derivatives. Turk J Chem 26 (2002), 335-343.

  15. M. Karelson; V.S. Lobanov; A.R. Katritzky, Quantum-Chemical. Descriptors in QSAR/QSPR Studies. Chem Rev, (1996), 96, 1027-1043.

    View Article           
  16. Ana M. Pajor; Nina N. Sun. nonsteroidal anti-inflammatory drugs and other anthranylic acids inhibit the Na+/ dicarboxylate symporter from taphylococus aureus. Biochemestry (2013), 52, 17, 2924-2932.

    View Article           
  17. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingfor d CT, 2009.

  18. www chemaxon.com

  19. Solov'ev V., Sukhno I., Buzko V., Polushin A., Marcou G., Tsivadze A., Varnek A. Stability Constants of Complexes of Zn2+, Cd2+, and Hg2+ with Organic Ligands : QSPR Consensus Modeling and Design of New Metal Binders. J. Incl. Phenom. Macrocycl. Chem., 2011,

    View Article           
  20. Solov'ev V., Oprisiu I., Marcou G., Varnek A. Quantitative Structure_Property Relationship (QSPR) Modeling of Normal Boiling Point Temperature and Composition of Binary Azeotropes. Ind. Eng. Chem. Res., 2011, 50, No. 24, pp 14162-14167.

    View Article           
  21. Varnek A., Solov'ev V. Quantitative Structure-Property Relationships in solvent extraction and complexation of metals. Rev. in Book : Ion Exchange and Solvent Extraction, A Series of Advances. Vol. 19, P. 319-358. A. K. Sengupta and B. A. Moyer, Eds., CRC Press, Taylor and Francis Group : Boca Raton, 2009, 679 pp.

    View Article           
  22. Solov'ev, V. P. ; Varnek, A. A. ; Wipff, G. Modelling of Ion Complexation and Extraction Using Substructural Molecular Fragments. J. Chem. Inf. Comput. Sci., 2000, 40, P. 847-858.

    View Article           
  23. Varnek, A. A. ; Wipff, G. ; Solov'ev, V. P. Towards an Information System on Solvent Extraction. J. Solvent Extr. Ion. Exch., 2001, 19, No. 5, P.791-837.

    View Article           
  24. Varnek, A. A. ; Wipff, G. ; Solov'ev, V. P., Solotnov A.F. Assessment of The Macrocyclic Effect for The Complexation of Crown-Ethers with Alkali Cations Using the Substructural Molecular Fragments Method. J. Chem. Inf. Comput. Sci., 2002, 42, No. 4, P. 812-829.

    View Article           
  25. Solov'ev, V. P. ; Varnek, A. Anti-HIV Activity of HEPT, TIBO and Cyclic Urea Derivatives : Structure-Property Studies, Focused Combinatorial Library Generation and Hits Selection Using Substructural Molecular Fragments Method. J. Chem. Inf. Comp. Sci., 2003, 43, No. 5, P. 1703-1719.

    View Article           
  26. Katritzky, A.R. ; Fara, D.C. ; Yang, H. ; Karelson, M. ; Suzuki, T. ; Solov'ev, V.P. ; Varnek A. Quantitative Structure-Property Relationship Modeling of ?-Cyclodextrin Complexation Free Energies. J. Chem. Inf. Comput. Sci. 2004, 44, No. 2, 529-541.

    View Article           
  27. Varnek, A. ; Fourches, D. ; Solov'ev, V. P. ; Baulin, V. E. ; Turanov, A. N. ; Karandashev, V. K. ; Fara, D. ; Katritzky, A. R. « In Silico » Design of New Uranyl Extractants Based on Phosphoryl-Containing Podands : QSPR Studies, Generation and Screening of Virtual Combinatorial Library and Experimental Tests. J. Chem. Inf. Comput. Sci., 2004, 44, No. 4, 1365-1382.

    View Article           
  28. Varnek, A. ; Solov'ev, V. P. « In Silico » Design of Potential Anti-HIV Actives Using Fragment Descriptors. Combinatorial Chem. High Throughput Screening, 2005, 8, No. 5, 403-416.

    View Article           
  29. Katritzky, A. R. ; Kuanar, M. ; Fara, D. C. ; Karelson, M. ; Acree, W. E. Jr. ; Solov'ev, V. P. ; Varnek, A. QSAR modeling of blood:air and tissue:air partition coefficients using theoretical descriptors. Bioorg. Med. Chem.,2005, 13, 6450-6463.

    View Article           
  30. Katritzky, A. R. ; Dobchev, D. A. ; Fara, D. C. ; Hur, E. ; Tamm, K. ; Kurunczi, L. ; Karelson, M. ; Varnek, A. ; Solov'ev, V. P. Skin Permeation Rate as a Function of Chemical Structure. J. Med. Chem., 2006, 49, No. 11, 3305-3314.

    View Article           
  31. Katritzky, A. R. ; Kuanar, M. ; Slavov, S. ; Dobchev, D. A. ; Fara, D. C. ; Karelson, M. ; William, E. ; Acree, W. E. Jr. ; Solov'ev, V. P. ; Varnek, A. Correlation of Blood - Brain Penetration Using Structural Descriptors. Bioorg. Med. Chem., 2006, 14, No. 14, 4888-4917.

    View Article           
  32. Varnek, A. ; Fourches, D. ; Sieffert, N. ; Solov'ev, V. P. ; Hill, C. ; Lecomte, M. QSPR Modeling of the AmIII / EuIII Separation Factor : How Far Can We Predict ? Solv. Extr. Ion Exch., 2007, 25, No. 1, P. 1-26.

    View Article           
  33. Horvath D., Bonachera F., Solov'ev V., Gaudin C., Varnek A. Stochastic versus Stepwise Strategies for Quantitative Structure - Activity Relationship Generations. - How Much Effort May the Mining for Successful QSAR Models Take? J. Chem. Inf. Model., 2007, 47, No. 3, P. 927-939.

    View Article           
  34. Varnek A. ; Fourches D. ; Solov'ev V. ; Klimchuk O. ; Ouadi A. ; Billard I. Successful « In Silico » Design of New Efficient Uranyl Binders. Solv. Extr. Ion Exch., 2007, 25, No. 4, P. 433-462.

    View Article           
  35. Varnek A., Fourches D., Horvath D., Klimchuk O., Gaudin С., Vayer P., Solov'ev V., Hoonakker F., Tetko I. V., Marcou G. ISIDA - Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors. Cur. Computer-Aided Drug Design, 2008, 4, No. 3, P. 191-198.

    View Article           
  36. Varnek A., Fourches D., Kireeva N., Klimchuk O., Marcou G., Tsivadze A., Solov'ev V. Computer-Aided Design of New Metal Binders. Radiochim. Acta, 2008, 96, P. 505-511.

    View Article           
  37. A Varnek , D Fourches, F Hoonakker, V P Solov'ev. Substructural fragment: an universal language to encode reactions, molecular and supramolecular structures. J. Comput. Aided Mol. Des., (2005). 19(9-10): P.693-703.

    View Article           
  38. View Article           
  39. U.Oleg, Diudea, M.V. activity prediction by cluj-simil program. Rev. Roum. Chim. (2003),48(4):321-330

  40. Solov'ev, V.; Varnek, A.; Tsivadze, A., QSPR Ensemble Modelling of the 1:1 and 1:2 Complexation of Co2+, Ni2+, and Cu2+ with Organic Ligands. Relationships between Stability Constants. J. Comput. Aided Mol. Des. (2014), 28, (5), 549-564.

    View Article           
  41. Varnek, A.; Kireeva, N.; Tetko, I. V.; Baskin, I. I.; Solov'ev, V. P., Exhaustive QSPR Studies of a Large Diverse Set of Ionic Liquids: How Accurately Can We Predict Melting Points? J. Chem. Inf. Model. (2007), 47, (3), 1111-1122.

    View Article           
  42. Tetko, I. V.; Solov'ev, V. P.; Antonov, A. V.; Yao, X. J.; Fan, B. T.; Hoonakker, F.; Fourches, D.; Lachiche, N.; Varnek, A., Benchmarking of Linear and Non-Linear Approaches for Quantitative Structure-Property Relationship Studies of Metal Complexation with Organic Ligands. J. Chem. Inf. Model. (2006), 46, (2), 808-819.

    View Article           

Journal Recent Articles